화학공학소재연구정보센터
Current Microbiology, Vol.77, No.6, 967-978, 2020
Distinct Profiles in Microbial Diversity on Carbon Steel and Different Welds in Simulated Marine Microcosm
The main studies on the corrosion of metals induced by microorganisms are directed only to the surface of the metal, without considering the presence of welds between these surfaces. For this reason, we evaluated the difference of microbial community grown in carbon steel coupons, and two different types of welds, E7018 and Tungsten electrodes, exposed under simulated microcosm. After 30 days, they were recovered, the biofilms scraped and the microbial communities analyzed by 16S rRNA gene sequencing. The results showed that there was a differentiated distribution among the three samples collected. Proteobacteria phylum composed most of the species described in all samples. At the class level, Gammaproteobacteria was the most detected, followed by Alphaproteobacteria and Flavobacteriia. The most prevalent order was Alteromonadales, which was present in Weld2, followed by Rhodobacteriales, which was more prevalent in Fe1020 and Weld1. The orders Cytophagales, Sphingomonadales, and Burkholderiales were described in higher number in Fe1020, whereas Oceanospirillales, Thiotrichales, Flavobacteriales, Rhodospirillales, and Kordiimonadales were higher in samples Weld1 and Weld2. The analyses between the three evaluated conditions show the presences of bacterial groups preferred by different types of metal, suggesting that approaches in the control of biocorrosion should take into account the chemical composition of the metal.