화학공학소재연구정보센터
Inorganic Chemistry, Vol.59, No.13, 8667-8677, 2020
Directing the Crystal Packing in Triphenylphosphine Gold(I) Thiolates by Ligand Fluorination
We explore herein the supramolecular interactions that control the crystalline packing in a series of fluorothiolate triphenylphosphine gold(I) compounds with the general formula [Au(SRF)(Ph3P)] in which Ph3P = triphenylphosphine and SRF = SC6F5, SC6HF4-4, SC6F4(CF3)-4, SC6H3F2-2,4, SC6H3F2-3,4, SC6H3F2-3,5, SC6H4(CF3)-2, SC6H4F-2, SC6H4F-3, SC6H4F-4, SCF3, and SCH(2)C(F)3. We use for this purpose (i) DFT electronic structure calculations and (ii) the quantum theory of atoms in molecules and the non-covalent interactions index methods of wave function analyses. Our combined experimental and computational approach yields a general understanding of the effects of ligand fluorination in the crystalline self-assembly of the examined systems, in particular, about the relative force of aurophilic contacts compared with other supramolecular interactions. We expect this information to be useful in the design of materials based on gold coordination compounds.