화학공학소재연구정보센터
International Journal of Energy Research, Vol.44, No.11, 8877-8891, 2020
Vicious cycle during chemical degradation of sulfonated aromatic proton exchange membranes in the fuel cell application
Weak phase separation and vulnerable linking groups between aromatic units are common setbacks of sulfonated aromatic proton exchange membranes (PEMs) from durability point of view. In this study, sulfonated poly(ether ether ketone) (SPEEK) membranes were exposed to Fenton's solution for a specific time, ranging from 10 to 60 minutes. Chemical structure and morphology evolution, decay in mechanical and thermal stability, and H(2)permeability of SPEEK membranes were evaluated during the chemical degradation. Less-entangled polymeric chains with lower average molecular weight of degraded SPEEK samples diminished mechanical rigidity. In addition, reduction of aromatic rings in each repeat unit led to higher thermal decomposition rate. Furthermore, randomly distributed micro-defects in the SPEEK morphology and an increase in water sorption can reduce the fatigue strength of membranes in the wet-dry cycles. Eventually, hydrogen cross-over rate was gradually increased, and henceforth, accelerated destructive radical formation and degradation can be predicted.