- Previous Article
- Next Article
- Table of Contents
International Journal of Energy Research, Vol.44, No.10, 7863-7885, 2020
A comparative review on power conversion topologies and energy storage system for electric vehicles
Fossil fuel depletion and its adverse impact on global warming is a major driving force for a recent upsurge in the development of hybrid electric vehicles technologies. This paper is a conglomeration of the recent literature in the usages of an energy storage system and power conversion topologies in electric vehicles (EVs). An EV requires sources that have high power and energy density to decrease the charging time. Commonly used energy storage devices in EVs are fuel cells, batteries, ultracapacitors, flywheel, and photovoltaic arrays. The power output from energy storage sources is conditioned to match load characteristics with the source for maximum power delivery. A DC-DC converter topology performs this task by way of transforming voltage under the condition of power invariance. In addition, power electronics is also required to power DC/AC motors efficiently with precise control as these motors provide tractive efforts and acts as prime movers. This paper therefore brings out a critical review of the literature on EV's power conversion topologies and energy storage systems with challenges, opportunities and future directions by systematic classification of EVs and energy storage.
Keywords:batteries;electric vehicles;fuel cell;hybrid electric vehicle;motors;power converters;ultracapacitors