화학공학소재연구정보센터
International Journal of Hydrogen Energy, Vol.45, No.29, 14841-14848, 2020
Self-assembled CdS@BN core-shell photocatalysts for efficient visible-light-driven photocatalytic hydrogen evolution
CdS@BN NRs core-shell photocatalysts for hydrogen evolution were synthesized by a solvothermal and chemical adsorption method. CdS NRs coated by 5 wt% boron nitride (BN) shell exhibited remarkably visible-light photocatalytic hydrogen evolution activity of up to 30.68 mmol g(-1) h(-1), nearly 6.79 times higher than that of pure CdS NRs, and the apparent quantum efficiency at 420 nm was 7.5%. Transmission electron microscopy showed the CdS NRs were coated with a thin (similar to 5 nm) BN layer, which together with the hydrogen evolution results proved the photocatalytic ability of CdS NRs was significantly improved. The hydrogen evolution rate of CdS NRs coated by 5 wt% BN remained at 91.4% after four cycles, indicating the photocorrosion of CdS NRs was effectively alleviated. Moreover, the large and close coaxial interfacial contact between the CdS core and the BN shell was beneficial to the separation and transfer of photogenerated electron-hole pairs. (C) 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.