화학공학소재연구정보센터
International Journal of Hydrogen Energy, Vol.45, No.24, 13231-13244, 2020
Hydrogen production via steam reforming of coke oven gas enhanced by steel slag-derived CaO
Steel slag, a waste from steelmaking plant, has been proven to be good candidate resources for low-cost calcium-based CO2 sorbent derivation. In this work, a cheap and sintering-resistance CaO-based sorbent (CaO (SS)) was prepared from low cost waste steel slag and was applied to enhance catalytic steam reforming of coke oven gas for production of high-purity hydrogen. This steel slag-derived CaO possessed a high and stable CO2 capture capacity of about 0.48 g CO2/g sorbent after 35 adsorption/desorption cycles, which was mainly ascribed to the mesoporous structure and the presence of MgO and Fe2O3. Product gas containing 95.8 vol% H-2 and 1.4 vol% CO, with a CH4 conversion of 91.3% was achieved at 600 degrees C by steam reforming of COG enhanced by CaO (SS). Although high temperature was beneficial for methane conversion, CH4 conversion was remarkably increased at lower operation temperatures with the promotion effects from CaO (SS), and CO selectivity has been also greatly decreased. Reducing WHSV could increase methane conversion and reduce CO selectivity due to longer reactants residence time. Reducing C/A could increase methane conversion and hydrogen recovery factor, and also decrease CO selectivity. When being mixed with catalyst during SE-SRCOG, CaO (SS) with a uniform size distribution favored methane conversion due to the high utilization efficiency of catalyst. Promising stability of CaO (SS) in cyclic reforming/calcination tests was evidenced with a hydrogen recovery factor >2.1 and CH4 conversion of 82.5% at 600 degrees C after 10 cycles using CaO (SS) as sorbent. (C) 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.