Korean Journal of Chemical Engineering, Vol.37, No.9, 1616-1622, September, 2020
ZnO/conducting polymer bilayer via sequential spin-coating for enhanced UV sensing
E-mail:
Zinc oxide (ZnO) has been widely investigated as an important ultraviolet (UV) sensing material in view of its wide band gap (~3.4 eV). However, the fabrication of continuous thin films of ZnO generally requires complex, time-consuming, and expensive processes, such as sputtering and atomic layer deposition. Herein, we demonstrate a bilayer film consisting of a conducting polymer and ZnO nanoparticles sequentially deposited using a simple, rapid, and inexpensive two-step spin-coating process. In this approach, it is not necessary to have a continuous ZnO nanoparticle film as the active layer, because the conducting polymer deposited under the ZnO nanoparticles acts as a conductive and continuous supporting layer for the particles. Poly(3,4-ethylenedioxythiophene) : polystyrene sulfonate (PEDOT: PSS) is used as the auxiliary layer to promote the efficient transport of photo-carriers generated from ZnO nanoparticles under UV light. As a result, under UV light (365 nm), photocurrents obtained from a ZnO/PEDOT: PSS bilayer film are significantly higher (~20 times) than that from a ZnO layer for a given voltage bias. The photoelectric performance can be further tuned by controlling the speed of spin-coating in the deposition of ZnO nanoparticles. The stability and photo response (rise and decay time) of the ZnO/PEDOT: PSS bilayer film under the repeated on-off condition are also reported.
- Zhang S, Cai L, Wang T, Shi R, Miao J, Wei L, Chen Y, Sepulveda N, Wang C, Sci. Rep., 5, 17883 (2015)
- Yu YQ, Luo LB, Wang MZ, Wang B, Zeng LH, Wu CY, Jie JS, Liu JW, Wang L, Yu SH, Nano Res., 8, 1098 (2015)
- Ardakani AG, Pazoki M, Mahdavi SM, Bahrampour AR, Taghavinia N, Appl. Surf. Sci., 258(14), 5405 (2012)
- Kim JY, Shin KY, Raza MH, Pinna N, Sung YE, Korean J. Chem. Eng., 36(7), 1157 (2019)
- Farzadkia M, Rahmani K, Gholami M, Esrafili A, Rahmani A, Rahmani H, Korean J. Chem. Eng., 31(11), 2014 (2014)
- Seo YS, Oh SG, Korean J. Chem. Eng., 36(12), 2118 (2019)
- Yu K, Zhang Y, Xu F, Li Q, Zhu Z, Wan Q, Appl. Phys. Lett., 88, 153123 (2006)
- Seong H, Yun J, Jun JH, Cho K, Kim S, Nanotechnology, 20, 245201 (2009)
- Liu Y, Wei N, Zeng Q, Han J, Huang H, Zhong D, Wang F, Ding L, Xia J, Xu H, Adv. Opt. Mater., 4, 238 (2016)
- Liu X, Du H, Wang P, Lim TT, Sun XW, J. Mater. Chem. C, 2, 9536 (2014)
- Lin D, Wu H, Zhang W, Li H, Pan W, Appl. Phys. Lett., 94, 172103 (2009)
- Inamdar SI, Rajpure KY, J. Alloy. Compd., 595, 55 (2014)
- Chen KJ, Hung FY, Chang SJ, Young SJ, J. Alloy. Compd., 479, 674 (2009)
- Wang Z, Zhan X, Wang Y, Muhammad S, Huang Y, He J, Nanoscale, 4, 2678 (2012)
- Tam TV, Hur SH, Chung JS, Choi WM, Sens. Actuators A-Phys., 233, 368 (2015)
- Son DI, Yang YH, Kim TW, Park WI, Appl. Phys. Lett., 102, 021105 (2013)
- Saenz-Trevizo A, Amezaga-Madrid P, Piza-Ruiz P, Antunez-Flores W, Miki-Yoshida M, Mat. Res., 19, 33 (2016)
- Davis EA, Mott NF, Philos. Mag., 22, 0903 (1970)
- Keem KH, Kim HS, Kim GT, Lee JS, Min BD, Cho KA, Sung MY, Kim SS, Appl. Phys. Lett., 84, 4376 (2004)
- Zhang W, Bi X, Zhao X, Zhao Z, Zhu J, Dai S, Ku Y, Yang S, Org. Electron., 15, 3445 (2014)
- Tyona MD, Adv. Mater. Res., 2, 195 (2013)
- Mouhamad Y, Mokarian-Tabari P, Clarke N, Jones RAL, Geoghegan M, J. Appl. Phys., 116, 123513 (2014)
- Meyerhofer D, J. Appl. Phys., 49, 3993 (1978)
- Boruah BD, Mukherjee A, Sridhar S, Misra A, ACS Appl. Mater. Interfaces, 7, 10606 (2015)
- Shin GH, Kim HY, Kim JH, Korean J. Chem. Eng., 35, 573 (2018)