화학공학소재연구정보센터
Macromolecular Research, Vol.28, No.9, 844-850, August, 2020
Silk Fibroin/Poly (vinyl alcohol) Hydrogel Cross-Linked with Dialdehyde Starch for Wound Dressing Applications
E-mail:
Silk fibroin (SF) with the anti-bacterial property can be used in many fields including medical applications. However, the preparation of SF into a desired form is difficult due to its brittleness and compatibility. The purpose of this study was to prepare and characterize hydrogel containing SF and poly(vinyl alcohol) (PVA) crosslinked with dialdehyde starch (DAS) without the need for a conventional chemical crosslinker. The compatibility of SF and PVA, the gel fraction, and the swelling ratio of the SF:PVA hydrogel were improved when crosslinked with DAS. Moreover, the addition of DAS affected the porosity and the water vapor transmission rate (WVTR) of the hydrogel. The optimal ratio for preparation of the hydrogel was 50:50 SF:PVA with 5 wt% DAS, which exhibited a high gel fraction of 98 % and a 245-fold gel swelling compared with that of the dried hydrogel. The consequent loss of weight suggested the stability of hydrogel in water. The WVTR of the hydrogel was 2280±114 g·m-2·day-1 close to the range suitable for maintaining the appropriate fluid balance in the wound bed for wound healing without risking wound dehydration. The hydrogel improvement properties propose the potential to expanding the applications of SF:PVA hydrogels as wound dressing materials.
  1. Catoira MC, Fusaro L, Francesco DD, Ramella M, Boccafoschi F, J. Mater. Sci. Mater. Med., 30, 115 (2019)
  2. Fua F, Chena Z, Zhaoa Z, Wanga H, Shanga L, Gua Z, Zhao Y, Adv. Mater., 31, 190282 (2019)
  3. Chai Q, Jiao Y, Yu X, Gels, 6, 3 (2017)
  4. Madhumitha G, Fowsiya J, Roopan SM, in Emerging Technology in Medical Applications of Hydrogel, Springer, Singapore, pp 196-218 2018
  5. Jayakumar A, Jose VK, Lee JM, Small Methods, 4, 190073 (2020)
  6. Croisier F, Jerome C, Eur. Polym. J., 49, 780 (2013)
  7. Kaplan DK, in Introduction to Biopolymers from Renewable Resources, Spinger, New York, pp 1-29 1998.
  8. Bhat AH, Khan I, Usmani MA, Umapathi R, Kindy SMZA, Int. J. Biol. Macromol., 129, 750 (2019)
  9. Singh SK, Int. J. Biol. Macromol., 132, 265 (2019)
  10. Song NB, Jo WS, Song HY, Chung KS, Won M, Song KB, Food Hydrocolloids, 31, 340 (2013)
  11. Minoura N, Aiba S, Higuchi M, Gotoh Y, Tsukada M, Imai Y, Biochem. Biophys. Res. Commun., 208, 511 (1995)
  12. Minoura N, Tsukada M, Nagura M, Polymer, 31, 265 (1990)
  13. Santin M, Motta A, Freddi G, Cannas M, J. Biomed. Mater. Res., 46, 382 (1999)
  14. Gil ES, Panilaitis B, Bellas E, Kaplan DL, Adv. Healthc. Mater., 2, 206 (2013)
  15. Zhang W, Chen L, Chen J, Wang L, Gui X, Ran J, Xu G, Zhao H, Zeng M, Ji J, Qian L, Zhou J, Quyang H, Zou X, Adv. Healthc. Mater., 6, 1 (2017)
  16. Vepari C, Kaplan DL, Prog. Polym. Sci., 32, 991 (2007)
  17. Nosrati H, Pourmotabed S, Sharifi E, J. Appl. Biotechnol. Rep., 5, 81 (2018)
  18. Dou Y, Zhang B, He M, Yin G, Cui Y, Savina IN, Polymers, 7, 580 (2015)
  19. Tanaka T, Tanigami T, Yamaura K, Polym. Int., 45, 175 (1998)
  20. Alves PMA, Carvalho RA, Moraes ICF, Luciano CG, Bittante AMQB, Sobral PJA, Food Hydrocolloids, 25, 1751 (2011)
  21. Figueiredo KCS, Alves TLM, Borges CP, J. Appl. Polym. Sci., 111(6), 3074 (2009)
  22. Rhim JW, Gennadios A, Weller CL, Cezeirat C, Hanna MA, Ind. Crop. Prod., 8, 195 (1998)
  23. Zuo Y, Liu W, Xiao J, Zhao X, Zhu Y, Wu Y, Int. J. Biol. Macromol., 103, 1257 (2017)
  24. Parris N, Coffin DR, J. Agric. Food Chem., 45, 1596 (1997)
  25. Rhim JW, Gennadios A, Handa A, Weller CL, Hanna MA, J. Agric. Food Chem., 48, 4937 (2000)
  26. Ustunol Z, Mert B, J. Food Sci., 69, 129 (2004)
  27. Langmaler F, Mokrejs P, Kolomamik K, Mladek M, J. Waste Manage., 28, 549 (2008)
  28. Mokrejs P, Langmaier F, Janacova D, Mladek M, Kolomaznik K, Vasek V, J. Therm. Anal. Calorim., 98, 299 (2009)
  29. Moonsri P, Watanesk R, Watanesk S, Niamsup H, Deming RL, J. Appl. Polym. Sci., 108(3), 1402 (2008)
  30. Yang X, Liu Q, Chen X, Yu F, Zhu Z, Carbohydr. Polym., 73, 401 (2008)
  31. Jarinya S, Sumonman N, Nophawan P, Anuvat S, AAPS Pharm SciTech, 13, 1407 (2012)
  32. Bhardwaj N, Kundu SC, Carbohydr. Polym., 85, 325 (2011)
  33. Balakrishnana B, Mohantyb M, Umashankarc PR, Jayakrishnan A, Biomaterials, 26, 6335 (2005)
  34. Dou Y, Zhang B, He M, Yin G, Cui Y, J. Macromol. Sci. A, 51, 1009 (2014)
  35. Elizondo NJ, Sobral PJA, Menegalli FC, Carbohydr. Polym., 75, 592 (2009)
  36. Narbat MK, Orang F, Hashtjin MS, Goudarzi A, Iran. Biomed. J., 10, 215 (2006)
  37. Witonoa JR, Noordergraaf IW, Heeres HJ, Janssen LPBM, Carbohydr. Polym., 103, 325 (2014)
  38. Valles E, Durando D, Katime I, Mendizabal E, Puig JE, Polym. Bull., 44(1), 109 (2000)
  39. Azeredo HMC, Mattoso LHC, Wood D, Williams TG, Avena-Bustillos RJ, McHugh TH, J. Food Sci., 74, 31 (2009)
  40. Lamke LO, Nilsson GE, Reithner HL, Burns, 3, 159 (1977)
  41. Queen D, Gaylor JDS, Evans JH, Courtney JM, Reid WH, Biomaterials, 8, 367 (1987)
  42. The European Directorate for the Quality of Medicines & HealthCare (EDQM), The International Pharmacopoeia, Geneva, World Health Organization, 2019.
  43. Jorgensen WL, Chandrasekhar J, Impey RW, Klein MLJ, Chem. Phys., 79, 926 (1993)