화학공학소재연구정보센터
Macromolecular Research, Vol.28, No.9, 869-876, August, 2020
Antimicrobial Activity of Polymeric Microfibers Containing Coix Lacryma-Jobi Extract
E-mail:
Wound dressings are based on the creation of ideal environments for cell mobility, gas exchanges and to promote tissue healing and regeneration, besides controlling bacterial proliferation. Electrospinning is a simple, cheap and common technique used for such purposes and Ecovio®, a polymeric blend based on biocompatible polymers (poly(butylene adipate-co-terephthalate) (PBAT) and poly(lactic acid) (PLA)), is a good example of polymer with unique properties for wound dressing materials development. To ensure antimicrobial properties, Job’s tears (Coix lacrymajobi) extract was incorporated into the material. The obtained fiber mats were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-ray diffractometry (DRX), optical microscopy (OM), and microbiological analysis. The interaction among the compounds of the extract and the polymeric matrix was inferred by the increase in the crystallinity degree and thermal stability of the fibers/extract. Also, a decrease in the diameter, roughness, and fiber homogeneity was observed. It happened due to the presence of extract in the fibers. Microbiological analysis (antimicrobial activity against S. aureus) indicated the effectiveness of the fibers/extract in preventing this bacteria growth, demonstrating the potential of this material for wound dressing purposes.
  1. Pries ALR, Bierhalz ACK, Moraes AM, Quim. Nova, 38, 957 (2015)
  2. Helmus MN, Gibbons DF, Cebon D, Toxicol. Pathol., 36, 70 (2008)
  3. He W, Benson R, in Applied Plastics Engineering Handbook: Processing, Materials, and Applications, 2nd ed., Elsevier, pp145-164 2017.
  4. Santos MHF, Ribeiro AM, Mesquita WD, Gurgel MFC, Revista Processos Quimicos, 13, 35 (2020)
  5. Mondal D, Griffith M, Venkatraman SS, Int. J. Polym. Mater. Polym. Biomater., 65, 255 (2016)
  6. Austin MJ, Rosales AM, Biomater. Sci., 7, 490 (2019)
  7. Lutolf MP, Hubbell JA, Nat. Biotechnol., 23, 47 (2005)
  8. Naseri-Nosar M, Ziora ZM, Carbohydr. Polym., 189, 379 (2018)
  9. Wang F, Hu S, Jia Q, Zhang L, J. Nanomater., 2020, 871985 (2020)
  10. Yuan TT, Foushee AMDG, Johnson MC, Jockheck-Clark AR, Stahl JM, Nanoscale Res. Lett., 13, 88 (2018)
  11. Adam J, Couturier J, Molinie V, Vieillefond A, Sibony M, Histopathology, 58, 1064 (2011)
  12. Amrani S, Halimi Y, Tahiri M, GSTF Int. J. Chem. Sci., 1, 47 (2014)
  13. Dong Y, Zheng Y, Zhang K, Yao Y, Wang L, Li X, Yu J, Ding B, Adv. Fiber Mater., doi:10.1007/s42765-020-00034-y (2020).
  14. Huebsch N, Mooney DJ, Nature, 462, 426 (2009)
  15. Pilehvar-Soltanahmadi Y, Dadashpour M, Mohajeri A, Fattahi A, Sheervalilou R, Zarghami N, Mini-Reviews Med. Chem., 18, 414 (2017)
  16. Liu M, Duan XP, Li YM, Yang DP, Long YZ, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 76, 1413 (2017)
  17. Chen FM, Liu X, Prog. Polym. Sci, 53, 86 (2016)
  18. Liu X, Nielsen LH, Klodzinska SN, Nielsen HM, Qu H, Christensen LP, Rantanen J, Yang M, Eur. J. Pharm. Biopharm., 123, 42 (2018)
  19. Liao N, Unnithan AR, Joshi MK, Tiwari AP, Hong ST, Park CH, Kim CS, Colloids Surf. A: Physicochem. Eng. Asp., 469, 194 (2015)
  20. Amann M, Minge O, in Synthetic Biodegradable Polymers, Springer, Berlin, Heidelberg, pp137-172 2011.
  21. Diningrat DS, Risfandi M, Harahap NS, Sari AN, Kusdianti, Siregar HK, J. Plant Biotechnol., 47, 100 (2020)
  22. Juliano C, Pala CL, Cossu M, J. Drug Deliv. Sci. Technol., 17, 177 (2007)
  23. Sharma R, Thakur GS, Sanodiya BS, Savita A, Pandey M, Sharma A, Bisen PS, ISOR J. Pharm. Biol. Sci., 4, 42 (2012)
  24. Tabassum N, Hamdani M, Pharmacogn. Rev., 8, 52 (2014)
  25. Bello OA, Ayanda OI, Aworunse OS, Olukanmi BI, Pharmacognosy Reviews. 1, 8 (2018).
  26. Rosenberger MG, de Araujo Amatuzi JC, Rosenberger AG, da Costa Zonetti P, Paulert R, Rev. em Agronegocio e Meio Ambient., 13, 135 (2020)
  27. Corke H, Huang Y, Li JS, Coix: Overview, in Reference Module in Food Science, Elsevier, pp1-6 2016.
  28. Yu F, Zhang J, Li Y, Zhao Z, Liu C, Chinese Herb. Med., 9, 126 (2017)
  29. Bhandari SR, Park SK, Cho YC, Lee YS, African J. Biotechnol., 11, 1872 (2012)
  30. Kuo CC, Shih MC, Kuo YH, Chiang W, J. Agric. Food Chem., 49, 1564 (2001)
  31. Zhu F, Trends Food Sci. Technol., 61, 160 (2017)
  32. Choi Y, Jeong HS, Lee J, Food Chem., 103, 130 (2007)
  33. Wu TT, Charles AL, Huang TC, Food Chem., 104, 1509 (2007)
  34. Fong H, Chun I, Reneker DH, Polymer, 40(16), 4585 (1999)
  35. Robb B, Lennox B, in Electrospinning for Tissue Regeneration, Woodhead Publishing, Cambridge, pp 51-66 2011.
  36. Mirzaei E, Sarkar S, Rezayat SM, Faridi-Majidi R, J. Adv. Med. Sci. Appl. Technol., 2, 141 (2016)
  37. Pavia DL, Lampman GM, Kriz GS, Vyvyan JA, Introduction to Spectroscopy, Cengage Learning, Belmont, 2008.
  38. Wang LF, Rhim JW, Hong SI, LWT - Food Sci. Technol., 68, 454 (2016)
  39. Oliveira JE, Mattoso LHC, Orts WJ, Medeiros ES, Adv. Mater. Sci. Eng., 2013, 409572 (2013)
  40. Kijchavengkul T, Auras R, Rubino M, Alvarado E, Montero JRC, Rosales JM, Polym. Degrad. Stabil., 95, 99 (2010)
  41. Zehetmeyer G, Meira SM, Scheibel JM, de Oliveira RVB, Brandelli A, Soares RMD, J. Appl. Polym. Sci., 133, 43212 (2016)
  42. Yeh JT, Tsou CH, Li YM, Xiao HW, Wu CS, Chai WL, Lai YC, Wang CK, J. Polym. Res., 19, 9766 (2012)
  43. Cai Y, Lv J, Feng J, J. Polym. Environ., 21, 108 (2013)
  44. Arruda LC, Magaton M, Bretas RES, Ueki MM, Polym. Test, 43, 27 (2015)
  45. Signori F, Coltelli MB. Bronco S, Polym. Degrad. Stabil., 94, 74 (2009)
  46. Pereira RB, Morales AR, Polim. Cienc. Tecnol., 24, 198 (2014)
  47. Fernandes TMD, Leite MCAM, de Sousa AMF, Furtado CRG, Escocio VA, da Silva ALN, Polym. Bull., 74(5), 1713 (2017)
  48. Das S, Akhter R, Khandaker S, Huque S, Das P, Anwar MR, Tanni KA, Shabnaz S, Shahriar M, J. Coast. Life Med., 5, 360 (2017)