Journal of Chemical and Engineering Data, Vol.65, No.5, 2619-2624, 2020
Experimental Vapor-Liquid Phase Equilibrium Analysis of the Binary Systems of Aniline with Xylene Isomers at 93.13 kPa
In the present work, vapor-liquid phase equilibrium (VLE) analyses of binary systems of aniline with four isomers of xylene, comprising p-xylene, m-xylene, o-xylene, and ethylbenzene, are reported at 93.13 kPa. The experimental VLE data was generated in a dynamic circulating vapor-liquid, and the data was found thermodynamically consistent using the Van Ness point-to-point consistency test. The experimental VLE data was regressed with the Wilson, NRTL, and UNIQUAC activity coefficient models to obtain the binary interaction parameters. No azeotropic or close-boiling behavior was observed in any of the binary pair, and these pairs were found suitable for separation through a conventional distillation method.