Journal of Physical Chemistry A, Vol.124, No.30, 6214-6236, 2020
Contributions of Experimental Data Obtained in Concentrated Mixtures to Kinetic Studies: Application to Monomethylhydrazine Pyrolysis
Experimental, numerical, and theoretical studies are performed to understand the explosive thermal decomposition of monomethylhydrazine/argon mixtures. Ignition delays of concentrated MMH/Ar mixtures (20-30%) have been measured behind a reflected shock wave around 1000 K and 1 atm. Although several detailed chemical kinetic models have predictive abilities for diluted and highly diluted mixtures, none of them showed predictive for concentrated mixtures. A new kinetic model is proposed, in which numerous rate constants and thermochemical data are reassessed based on theoretical calculations, with the purpose to determine whether, or to what extent, trends derived from diluted or highly diluted MMH/Ar mixtures can explain observations in concentrated MMH mixtures. The present kinetic model is found to predict speciation experimental profiles in diluted MMH/Ar mixtures and is a significant improvement in predicting the induction delays of concentrated MMH/Ar mixtures.