화학공학소재연구정보센터
Journal of Physical Chemistry A, Vol.124, No.19, 3886-3895, 2020
Heterogeneous Chemistry of CaCO3 Aerosols with HNO3 and HCl
Calcite (CaCO3) aerosols often serve as an idealized proxy for calcium-rich mineral dust. Their use has also previously been proposed for stratospheric solar radiation management (SSRM). Little is known about the heterogeneous chemistry of calcite aerosols with trace gases HNO3 and HCl and therefore their potential impact on stratospheric ozone (O-3). Here we report the results of an experimental study of the uptake of HNO3 and HCl onto submicron CaCO3 particles in two different flow reactors. Products and reaction kinetics were observed by impacting aerosolized CaCO3 onto ZnSe windows, exposing them to the reagent gases at a wide range of concentrations, at 296 K and under dry conditions, and analyzing the particles before and after trace gas exposure using Fourier transform infrared spectroscopy (FTIR). A Ca(OH)(HCO3) termination layer was detected in the form of a HCO3- peak in the FTIR spectra, indicating a hydrated surface even under dry conditions. The results demonstrate the reaction of HNO3 with Ca(OH)(HCO3) to produce Ca(NO3)(2), water, and CO2. HCl reacted with Ca(OH)(HCO3) to produce CaCl2 and also water and CO2. The depletion of the Ca(OH)(HCO3)/Ca(CO3) signal due to reaction with HNO3 or HCl followed pseudo-first-order kinetics. From the FTIR analysis, the reactive uptake coefficient for HNO3 was determined to be in the range of 0.013 =.HNO3 = 0.14, and that for HCl was 0.0011 =.HCl = 0.012 within the reported uncertainty. The reaction of HCl with airborne CaCO3 aerosols was also studied in an aerosol flow tube coupled with a quadrupole chemical ionization mass spectrometer (CIMS) under similar conditions to the FTIR study, and.HCl was determined to be 0.013 +/- 0.001. Following previous modeling studies, these results suggest that the reactions of HCl and HNO3 with calcite in the stratosphere could ameliorate the potential for stratospheric solar radiation management to lead to stratospheric ozone depletion.