Journal of the American Chemical Society, Vol.142, No.33, 14125-14133, 2020
General Synthesis of Trialkyl- and Dialkylarylsilylboranes: Versatile Silicon Nucleophiles in Organic Synthesis
Compared to carbon-based nucleophiles, the number of silicon-based nucleophiles that is currently available remains limited, which significantly hampers the structural diversity of synthetically accessible silicon-based molecules. Given the high synthetic utility and ease of handling of carbon-based boron nucleophiles, silicon-based boron nucleophiles, i.e., silylboranes, have attracted considerable interest in recent years as nucleophilic silylation reagents that are activated by transition-metal catalysts or bases. However, the range of practically accessible silylboranes remains limited. In particular, the preparation of sterically hindered and functionalized silylboranes remains a significant challenge. Here, we report the use of rhodium and platinum catalysts for the direct borylation of hydrosilanes with bis(pinacolato)diboron, which allows the synthesis of new trialkylsilylboranes that bear bulky alkyl groups and functional groups as well as new dialkylarylsilylboranes that are difficult to synthesize via conventional methods using alkali metals. We further demonstrate that these compounds can be used as silicon nucleophiles in organic transformations, which significantly expands the scope of synthetically accessible organosilicon compounds compared to previously reported methods. Thus, the present study can be expected to inspire the development of efficient methods for novel silicon-containing bioactive molecules and organic materials with desirable properties. We also report the first B-11{H-1} and Si-29(H-1) NMR spectroscopic evidence for the formation of i-Pr3SiLi generated by the reaction of i-Pr3Si-B(pin) with MeLi.