화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.142, No.25, 11270-11278, 2020
Triplet Energy Transfer from Perovskite Nanocrystals Mediated by Electron Transfer
Triplet energy transfer from colloidal nanocrystals is a novel approach to sensitizing molecular triplets that are important for many applications. Recent studies suggest that this triplet transfer can be mediated by a hole transfer process when it is energetically allowed. In contrast, electrontransfer-mediated triplet transfer has not been observed yet, which is likely due to hole-trapping in typical II-VI group nanocrystals inhibiting the hole transfer step following initial electron transfer and hence disrupting a complete triplet exciton transfer. Here we report electron-transfer-mediated triplet energy transfer from CsPbCI3 and CsPbBr(3 )perovskite nanocrystals to surface-anchored rhodamine molecules. The mechanism was unambiguously established by ultrafast spectroscopy; control experiments using CdS nanocrystals also confirmed the role of hole-trapping in inhibiting this mechanism. The sensitized rhodamine triplets engaged in a variety of applications such as photon upconversion and singlet oxygen generation. Compared to conventional one-step triplet transfer, the electron-transfer-mediated mechanism is less demanding in terms of interfacial electronic coupling and hence is more generally implementable. Overall, this study not only establishes a complete framework of triplet energy transfer across nanocrystal/molecule interfaces but also greatly expands the scope of molecular triplet sensitization using nanocrystals.