화학공학소재연구정보센터
Powder Technology, Vol.368, 59-69, 2020
Preparation method and underlying mechanism of MWCNTs/Ti6Al4V nanocomposite powder for selective laser melting additive manufacturing
The fabrication of high-performance metal matrix nanocomposites is a new development direction in laser additive manufacturing (AM); however, the unique localized line-by-line and layer-by-layer forming process of AM has special requirements on the applicable powder materials for AM. The feedstock powder preparation is an important factor in laser AM, especially the CNTs/metal nanocomposite powder for selective laser melting (SLM) due to the agglomeration of the CNTs. This work focused on the preparation of multi-walled carbon nanotubes/Ti6Al4V (MWCNTs/TC4) nanocomposite powder for laser AM by a planetary ball-milling (PBM). The effect of ball-milling time on the characteristics of nanocomposite powder was studied and the underlying physical mechanism for powder preparation was disclosed. Three nanocomposite powders with milling time of 2 h, 4 h and 16 h were used for SLM processing to determine the optimal nanocomposite powders. The results showed that although the MWCNTs were dispersed uniformly in the matrix powder at increased milling time, severely plastic deformation of nanocomposite powder occurred with loss of its spherical shape. It was concluded that a ball-milling time of 4 h at a speed of 300 rpm was determined to achieve optimal nanocomposite powder for SLM. SLM processing of the nanocomposite powder demonstrated a smooth laser-powder interaction, yielding good metallurgical bonding of scanning tracks with previous tracks and relatively flat surface of samples. This work provided the significant reference to prepare high quality CNTs/metal nanocomposite powder for SLM, which has great potentials to fabricate high-performance metal matrix nanocomposite. (C) 2020 Elsevier B.V. All rights reserved.