화학공학소재연구정보센터
SIAM Journal on Control and Optimization, Vol.58, No.2, 605-635, 2020
EVENT-TRIGGERED CONTROL OF INFINITE-DIMENSIONAL SYSTEMS
This paper addresses the problem of event-triggered control for infinite-dimensional systems. We employ event-triggering mechanisms that compare the plant state and the error of the control input induced by the event-triggered implementation. Under the assumption that feedback operators are compact, a strictly positive lower bound on the interevent times can be guaranteed. We show that if the threshold of the event-triggering mechanisms is sufficiently small, then the event-triggered control system with a bounded control operator and a compact feedback operator is exponentially stable. For infinite-dimensional systems with unbounded control operators, we employ two event-triggering mechanisms that are based on system decomposition and periodic event-triggering, respectively, and then analyze the exponential stability of the closed-loop system under each event-triggering mechanism.