화학공학소재연구정보센터
Polymer(Korea), Vol.44, No.5, 672-683, September, 2020
실란화 몬모릴로나이트 캡슐과 기능성 소재를 충전한 하이브리드 고분자개질 방수아스팔트
Silanized Montmorillonite Capsule and Functional Materials Filled Hybrid Polymer-modified Waterproofing Asphalt
E-mail:
초록
본 연구에서는 Na+로 양이온 교환시킨 몬모릴로나이트(montmorillonite, MMT)를 응집시키고, 이러한 응집체의 표면을 고분자개질 아스팔트와 상용성이 있도록 실란커플링제인 3-aminopropyltriethoxysilane(APS)로 표면을 개질시킨 실란화 MMT 캡슐을 기능성 소재로서 제조하였다. 또한 실란화 MMT 캡슐 내부에서 캡슐 외부표면보다 실란화가 적게 수행되는 실란화 MMT 캡슐 효과를 원소분석, FTIR, SEM, XRD 및 TGA 분석을 통하여 관찰하였다. 탄소섬유(2.5%)와 스테아릭산-코팅 탄산칼슘(2.5%)의 적정조성비를 가진 하이브리드 충전재가 첨가된 하이브리드 방수개질아스팔트(a), 및 탄소섬유(2.5%)와 실란화 MMT 캡슐(2.5%)의 하이브리드 충전재가 첨가된 하이브리드 방수개질아스팔트(b)의 경우에 모두, 기존 방수개질아스팔트와 다르게, 규격 KS F 3211의 인장강도, 파단신장률 및 인열강도의 요구조건을 모두 만족하였다. 한편, 하이브리드 방수개질아스팔트(b) 시편의 경우에는 투수저항의 한계수압은 0.5 N/mm2 이상으로, 기존 방수개질아스팔트와 반대로 KS F 4935의 투수저항성 요구기준(i.e., 0.3 N/mm2 이상)을 만족시켰을 뿐 아니라, 0.4 N/mm2의 수압에서 투수가 된 하이브리드 방수개질아스팔트(a) 시편보다 우수한 자가보수(self-repair) 능력을 보였다.
In this study, Na+-exchanged montmorillonite (MMT) was aggregated and subsequently the surface of the aggregates was modified by 3-aminopropyltriethoxysilane (APS) in order to be compatible with a polymer-modified asphalt. Thus, the modified MMT-aggregates were prepared, and silanized to be silanized MMT capsules. In addition, it was observed by elementary analysis, FTIR, SEM, XRD, and TGA that the degree of silanization inside the prepared silanized MMT capsules turned out to be remarkably less than that on the surface of the silanized MMT capsules. Both of hybrid waterproofing polymer-modified asphalt (a) filled with carbon fiber (2.5%) and stearic acid-coated CaCO3 (2.5%) and hybrid waterproofing polymer-modified asphalt (b) filled with carbon fiber (2.5%) and the silanized MMT capsules (2.5%), satisfied all the requirements of tensile strength, elongation at break and tearing strength of KS F 3211 unlike a conventional waterproofing polymer-modified asphalt. In addition, in case of the specimen of hybrid waterproofing polymer-modified asphalt (b), its limiting water pressure of water penetration resistance was more than 0.5 N/mm2 to show a very superb self-repairing ability and to satisfy the requirement of water pressure of water penetration resistance (i.e., 0.3 N/mm2) according to KS F 4935 unlike the conventional waterproofing polymer-modified asphalt, compared to that of hybrid waterproofing polymer-modified asphalt (a) which water penetrates even at the water pressure of 0.4 N/mm.
  1. Guo F, Aryana S, Han Y, Jiao Y, Appl. Sci., 8, 1696 (2018)
  2. Lee EJ, Lee JH, Park YJ, Yoon YK, Lim KH, Korean Chem. Eng. Res., 55(3), 401 (2017)
  3. Simon MW, Stafford KT, Ou DL, J. Inorg. Organomet. Polym. Mater, 18, 364 (2008)
  4. Abdelrahman M, Katti DR, Ghavibazoo A, Upadhyay HB, Katti KS, J. Mater. Civ. Eng., 26, 040140 (2014)
  5. Zare-Shahabadi A, Shokuhfar A, Ebrahimi-Nejad S, Constr. Build. Mater., 24, 1239 (2010)
  6. Ganesh VK, Eur. Sci. J., 8, 96 (2010)
  7. Chen SJ, Zhang XN, Advanced Engineering Forum, Editor, Vol 5, p 259 (2012).
  8. Yildirim Y, Constr. Build. Mater., 21, 66 (2007)
  9. Porto M, Caputo P, Loise V, Eskandarsefat S, Teltayev B, Rossi CO, Appl. Sci., 9, 742 (2019)
  10. Yu J, Ren Z, Yu H, Wang D, Svetlana S, Korolev E, Gao Z, Guo F, Materials, 11, 2093 (2018)
  11. Yu JY, Wang L, Zeng X, Wu SP, Li B, Polym. Eng. Sci., 47(9), 1289 (2007)
  12. Polacco G, Kriz P, Filippi S, Stastna J, Biondi D, Zanzotto L, Eur. Polym. J., 44, 3512 (2008)
  13. Yao H, You Z, Li L, Shi X, Goh SW, Mills-Beale J, Wingard D, Constr. Build. Mater., 35, 159 (2012)
  14. Galooyak SS, Dabir B, Nazarbeygi AE, Moeini A, Constr. Build. Mater., 24, 300 (2010)
  15. You Z, Mills-Beale J, Foley JM, Roy S, Odegard GM, Dai Q, Goh SW, Constr. Build. Mater., 25, 1072 (2011)
  16. Lee EJ, Lee JH, Lim KH, Korean Chem. Eng. Res., 55(3), 409 (2017)
  17. Lee EJ, Lee JH, Lim KH, Polym. Korea, 44(1), 1 (2020)
  18. KS F 3211, Korean Standards of Waterproofing membrane coating for construction, Korean Standards Association, Korea (2015).
  19. KS F 4935, Korean Standards of sealer of injection type for water leakage maintenance of adhesive flexible rubber asphalt series, Korean Standards Association, Korea (2018).
  20. Glatstein DA, Francisca FM, Appl. Clay Sci., 118, 61 (2015)
  21. Bertuoli PT, Piazza D, Scienza LC, Zattera AJ, Appl. Clay Sci., 87, 46 (2014)
  22. Reshimi R, Sugunan S, J. Mol. Catal. B-Enzym., 97, 36 (2013)
  23. Zeng XX, Xu GH, Gao YA, An Y, J. Phys. Chem. B, 115(3), 450 (2011)
  24. Gianni AD, Amerio E, Monticelli O, Bongiovanni R, Appl. Clay Sci., 42, 116 (2008)
  25. Guimaraes AMF, Ciminelli VST, Vasconcelos WL, Appl. Clay Sci., 42, 410 (2009)
  26. Xie Y, Hill CAS, Xiao Z, Militz H, Mai C, Compos. Pt. A-Appl. Sci. Manuf., 41, 806 (2010)
  27. Shanmugharaj AM, Rhee KY, Ryu SH, J. Colloid Interface Sci., 298(2), 854 (2006)
  28. Uddin UF, Montmorillonite: An Introduction to Properties and Utilization, http://dx.doi.org/10.5772/intechopen.77987 (2018).