화학공학소재연구정보센터
Clean Technology, Vol.26, No.3, 177-185, September, 2020
비산재로부터 유용성분을 회수하는 청정부유선별공정
Clean Flotation Process to Recycle useful Materials from Fly Ash
E-mail:
초록
본 연구에서는 석탄화력발전소에서 전량 폐기되고 있는 석탄재의 재활용 방안으로 석탄회의 80%를 차지하고 있는 비산재로부터 유용성분을 회수하고 이를 산업재로 활용하기 위한 청정부유선별 공정을 개발하였다. 비산재로부터 미연탄소 (unburned carbon, UC) 를 회수하기 위해 비이온성 포수제인 등유 대신에 친환경 식물성 오일인 대두유를 사용하여 등유로부터 악취 발생을 예방하였고 부유선별 후 잔류물로부터 CM (ceramic microsphere)과 CA (cleaned ash)를 분리하기 위해 황산용액을 사용하지 않고 hydro-cyclone를 사용함으로써 산성폐수를 발생시키지 않고 미립의 CM를 회수할 수 있었다. 등유를 포수제로 사용하여 UC를 분리할 때 보다 대두유를 포수제로 사용하였을 때, 대두유의 높은 점성으로 인한 UC의 흡착성 증가와 대두유에 포함된 리놀레산에 의해 부유성 향상으로 UC의 회수율이 85.8%로 높게 나타났다. 회수된 UC에 포함된 연소가능성분(combustible component, CC)은 모두 탄소성분으로 대두유를 사용하였을 때 탄소의 함량이 높게 나타났으며, 회수된 UC는 표면이 거칠면서 기공이 많아 분쇄가 쉬워 미립화로 산업용 소재로 활용할 수 있을 것이다. Hydro-cyclone을 이용한 입도선별 청정분리공정에 의해 회수된 CM과 CA는 구형 형상으로 입자들이 서로 뭉치지 않고 뚜렷하게 분리되었으며 입자의 평균직경(D50)은 5 μm로 미세하여 공정변경에 의한 CM의 미립화를 구현할 수 있었다.
All coal ash, generated from coal-fired power plants, is entirely dumped onto a landfill site. As coal ash contains 80% fly ash, a clean floating process was developed in this study to recover useful components from coal ash and to use them as high value-added industrial materials. When the unburned carbon (UC) was recovered from the fly ash, soybean oil, an eco-friendly vegetable oil, was used as collector instead of a non-ionic kerosene collector to prevent the occurrence of odor from the kerosene. After the UC was separated by flotation, particulate ceramic microsphere (CM) was recovered, without generating acidic wastewater, through hydro-cyclone instead of sulfuric acid solution in order to separate ceramic microsphere (CM) and cleaned ash (CA) from the residue. By utilizing soybean oil as a collector, the recovery rate of UC turned high at 85.8% due to the increased adsorption of UC, the high viscosity of soybean oil, and the increase in floating properties caused by the linoleic acid contained in soybean oil. All of the combustible components contained in the recovered UC were carbon components, with the carbon content registering high when soybean oil was used. The recovered UC had many pores with a rough surface; thus, it could be easily ground and then used as an industrial material for its fine particles. The CM and CA recovered by the clean separation process using hydro-cyclone had a spherical shape, and the particles were clearly separated without clumping together. The average diameter (D50) of the particles was 5 μm, so it was possible to realize the atomization of CM through a process change.
  1. Ahmaruzzaman M, Prog. Energy Combust. Sci., 36(3), 327 (2010)
  2. Zyrkowski M, Neto RC, Santos LF, Witkowski K, Fuel, 174, 49 (2016)
  3. Maeng JH, Kim TV, Suh DH, Korea Environ. Inst. (2014).
  4. Suh DH, Maeng JH, J. Environ. Impact Assess., 24(5), 472 (2015)
  5. Na CK, Kim SB, J. Korea Soc. Waste Manage., 21(4), 328 (2004)
  6. Yao ZT, Ji XS, Sarker PK, Tang JH, Ge LQ, Xia MS, Xi YQ, Earth-Sci. Rev., 141, 105 (2015)
  7. Cho H, Maeng JH, Kim EY, J. Environ. Impact Assess., 26(6), 563 (2017)
  8. Seho SL, Lee YS, An EM, Cho SB, J. Korean Inst. Resour. Recycl., 23(1), 40 (2014)
  9. Kim WY, Ji HB, Yang TY, Yoon SY, Park HC, J. Korean Ceram. Soc., 47(2), 151 (2010)
  10. Lee ES, Back SK, Cho SJ, Kim KH, Seo YC, J. Korea Soc. Waste Manag., 36(7), 624 (2019)
  11. Choi JH, Oh SC, J. Korea Soc. Waste Manag., 36, 471 (2019)
  12. Song OY, Jung JO, J. Korea Soc. Waste Manag., 36, 146 (2019)
  13. Vassilev SV, Vassileva CG, Fuel Process. Technol., 47(3), 261 (1996)
  14. Hower JC, Senior CL, Suuberg EM, Hurt RH, Wilcox JL, Olson ES, Prog. Energy Combust. Sci., 36(4), 510 (2010)
  15. Han G, Yang S, Peng W, Huang Y, Wu H, Chai W, Liu J, J. Clean Prod., 178, 804 (2018)
  16. Demir U, Yamik A, Kelebek S, Oteyaka B, Ucar A, Sahbaz O, Fuel, 87(6), 666 (2008)
  17. Zhou F, Yan CJ, Wang HQ, Zhou S, Liang H, Fuel, 190, 182 (2017)
  18. Altun NE, Xiao CF, Hwang JY, Fuel Process. Technol., 90(12), 1464 (2009)
  19. Niewiadomski M, Hupka J, Bokotko R, Miller JD, Fuel, 78(2), 161 (1999)
  20. Hurst VJ, Styron RW, US patent 4121945, (1978).
  21. Gray ML, Champagne KJ, Soong Y, Killmeyer RP, Maroto-Valer MM, Andresen JM, Ciocco MV, Zandhuis PH, Fuel Process. Technol., 76(1), 11 (2002)
  22. Yang L, Zhu Z, Li D, Yan X, Zhang H, Waste Manage., 85, 490 (2019)
  23. Kim DS, Han GS, Lee DK, Clean Technol., 25(3), 179 (2019)
  24. Jena MS, Biswal SK, Rudramuniyappa MV, Int. J. Miner. Process,, 87, 42 (2008)
  25. Ivanov DS, Levic JD, Sredanovic SA, Journal of the Institute for Food Technology in Novi Sad., 37(2), 65-70 (2010).
  26. Brandao PRG, Caires LG, Queiroz DSB, Miner. Eng., 7(7), 917 (1994)
  27. Abdullah BM, Salih N, Salimon J, J. Saudi Chem. Soc., 18(3), 276 (2014)