Clean Technology, Vol.26, No.3, 211-220, September, 2020
80 kW 초 저 NOx 단일 버너 연소로에서 NOx 감소를 위한 운전특성 연구
Study on Operating Characteristics for NOx Reduction in Ultra Low NOx Burner Combustion Using 80 kW Furnace
E-mail:
초록
본 연구는 80 kW급 단일버너 연소로에서 석탄 연소시 초저 NOx 버너 설계인자를 평가하기 위한 실험적 연구이다. 버너 설계인자인 선회강도, 총 과잉 공기비, 버너 영역 과잉공기비, 1차/2차 산화제 비율, OFA 비율을 변경하여 총 81개 조건을 대상으로 실험을 수행 하였다. 실험 결과, 선회류가 약하면 연소로 출구에서 CO가 증가하고 연소로 내부 온도가 감소하는 것으로 나타났다. 그러나, 선회류가 강하면 NOx가 증가하기 때문에 적절한 선회류 강도를 결정하는 것은 NOx를 줄이는 데 중요한 요소이다. 1차/2차 산화제의 비율 또한 중요한 요소이며, 생성 된 NOx의 양은 산화제의 비율에 따라 달라진다. 2차 산화제의 비율이 증가하면 연소 초기에 NOx 방출량이 증가하고, 측정 된 배출구 NOx가 증가하게 된다. 그러나, 2차 산화제 비율이 감소하면 화염이 길어지고 CO가 증가한다. 본 연구에 사용 된 연소 시스템은 적절한 조건이 만족 될 때 O2 6%를 기준으로 최소 NOx가 82 ppm 생성되는 것으로 확인 되었다. 본 실험에서 대상으로 한 버너는 연소용 공기를 석탄을 이송하는 1차공기 외에 2차공기로 하나의 산화제 유동만 사용하는 방식으로서 추후 3차 및 4차공기로 분할하여 화염형태 및 반응을 세밀하게 제어할 경우 추가적인 NOx 감소가 가능할 것으로 예상된다.
This experimental study investigates the design parameters to achieve ultra low NOx combustion of coal using a
80 kW capacity single-burner furnace. The influence of key design parameters such as SN, overall and burner-zone
equivalence ratios, primary/secondary air ratio, overfire air (OFA) ratio were tested for a total of 81 cases. The results showed
that weak swirl intensity of the burner leads to higher NOx emission whereas strong swirl intensity accompanies increased
CO concentration desipte lower NOx emission. Therefore, finding an appropirate swirl intensity is essential for the burner
design. Larger flow rate of secondary air increased NOx emission, whereas smaller flow rate stretches the flame and
increased CO emission. The lowest NOx emission of 82 ppm (6% O2) was achieved at the optimal condition of the present
burner deisgn. It is expected to furrther lower the NOx emission by introducing splitting the burner secondary air into three
or four streams.
- BP Statistical Review of World Energy, June 2016. Available online:https://www.bp.Com/content/dam/bp/pdf/energy.economics/statistical.-review-2016/bp-statistical-review-of-worldenergy-2016-full-report.pdf (acessed on 2 January 2017).
- World Energy Outlook 2015, 10 November 2015. Available online: https://www.iea.org/bookshop/700-World_Energy_Outlook_2015 (acessed on 2 January 2017).
- Liu X, Tan H, Wang Y, Yang F, Mikulcic H, Vujanovic M, Duic N, J. Environ. Manage., 220, 30 (2018)
- Fan W, Lin Z, Li Y, Li Y, Energy Fuels, 24(3), 1573 (2010)
- Forzatti P, Appl. Catal. A: Gen., 222(1-2), 221 (2001)
- Vascellari M, Cau G, Fuel, 101, 90 (2012)
- Schaffel N, Mancini M, Szlek A, Weber R, Combust. Flame, 156(9), 1771 (2009)
- Jovanovic R, Milewska A, Swiatkowski B, Goanta A, Spliethoff H, Fuel, 101, 23 (2012)
- Jovanovic R, Milewska A, Swiatkowski B, Goanta A, Spliethoff H, Int. J. Heat Mass Transf., 54(4), 921 (2011)
- Toporov D, Bocian P, Heil P, Kellermann A, Stadler H, Tschunko S, Forster M, Kneer R, Combust. Flame, 155(4), 605 (2008)
- Fortunato B, Camporeale S, Torresi M, Procedia Comput. Sci, 19, 736 (2013)
- Fortunato B, Camporeale SM, Torresi M, Fornarelli F, Brunetti G, Pantaleo AM, In Proceedings of the ASME Turbo Expo, 13-17 (2016).
- Khan M, Mmbaga J, Shirazi A, Trivedi J, Liu Q, Gupta R, Energies, 8, 12603 (2015)
- Aziz M, Budianto D, Oda T, Energies, 137 (2016).
- Xu W, Niu Y, Tan H, Wang D, Du W, Hui S, Energies, 6(9), 4377 (2013)
- Bhuiyan AA, Naser J, Fuel, 159, 150 (2015)
- Perrone D, Castiglione T, Morrone P, Barbarelli S, Amelio M, Energy Procedia, 148, 567 (2018)
- Soud HN, Fukasawa K, IEA Coal Research, 123-125 (1996).