Korean Journal of Materials Research, Vol.30, No.9, 480-488, September, 2020
새로운 플루오라이트 구조 강유전체의 Electrocaloric Effect
Electrocaloric Effect in Emerging Fluorite-Structure Ferroelectrics
E-mail:
The electrocaloric effect can be observed in pyroelectric materials based on conversion between electrical and thermal energy, and can be utilized for the future environment-friendly refrigeration technology. Especially, a strong electrocaloric effect is expected in materials in which field-induced phase transition can be achieved. Emerging fluoritestructure ferroelectrics such as doped hafnia and zirconia, first discovered in 2011, are considered the most promising materials for next-generation semiconductor devices. Besides application of fluorite-structure ferroelectrics for semiconductor devices based on their scalability and CMOS-compatibility, field-induced phase transition has been suggested as another interesting phenomenon for various energy-related applications such as solid-state cooling with electrocaloric effect as well as energy conversion/storage and IR/piezoelectric sensors. Especially, their giant electrocaloric effect is considered promising for solid-state-cooling. However, the electrocaloric effect of fluorite-structure oxides based on field-induced phase transition has not been reviewed to date. In this review, therefore, the electrocaloric effect accompanied by field-induced phase transition in fluorite-structure ferroelectrics is comprehensively reviewed from fundamentals to potential applications.
- Boscke TS, Muller J, Brauhaus D, Schroder U, Bottger U, Appl. Phys. Lett., 99, 102903 (2011)
- Park MH, Lee YH, Kim HJ, Kim YJ, Moon T, Do Kim K, Muller J, Kersch A, Schroeder U, Mikolajick T, Hwang CS, Adv. Mater., 27(11), 1811 (2015)
- Ohtaka O, Fukui H, Kunisada T, Fujisawa T, Funakoshi K, Utsumi W, Irifune T, Kuroda K, Kikegawa T, J. Am. Ceram. Soc., 84(6), 1369 (2001)
- Ohtaka O, Fukui H, Kunisada T, Fujisawa T, et al., Phys. Rev. B, 63, 174108 (2001)
- Schroeder U, Yurchuk E, Muller J, Martin D, et al., Jpn. J. Appl. Phys., 53, 08LE02 (2014)
- Park MH, Schenk T, Fancher CM, Grimley ED, et al., J. Mater. Chem. C, 5, 4677 (2017)
- Polakowski P, Muller J, Appl. Phys. Lett., 106, 232905 (2015)
- Kim KD, Park MH, Kim HJ, Kim YJ, Moon T, Lee YH, Hyun SD, Gwon T, Hwang CS, J. Mater. Chem. C, 4, 6864 (2016)
- Mittmann T, Materano M, Lomenzo PD, Park MH, et al., Adv. Mater. Interfaces, 6, 190004 (2019)
- Lin BT, Lu YW, Shieh J, Chen MJ, J. European Ceram. Soc., 37, 1135 (2017)
- Starschich S, Schenk T, Schroeder U, Boettger U, Appl. Phys. Lett., 110, 182905 (2017)
- Sang X, Grimley ED, Schenk T, Schroeder U, LeBeau JM, Appl. Phys. Lett., 106, 162905 (2015)
- Wei YF, Nukala P, Salverda M, Matzen S, Zhao HJ, Momand J, Everhardt AS, Agnus G, Blake GR, Lecoeur P, Kooi BJ, Iniguez J, Dkhil B, Noheda B, Nat. Mater., 17(12), 1095 (2018)
- Park MH, Hwang CS, Rep. Prog. Phys., 82, 124502 (2019)
- Park MH, Kim HJ, Kim YJ, Moon T, Kim KD, Hwang CS, Nano Energy, 12, 131 (2015)
- Park MH, Kim HJ, Kim YJ, Moon T, Do Kim K, Lee YH, Hyun SD, Hwang CS, Adv. Mater., 28(36), 7956 (2016)
- Park MH, Schenk T, Hoffmann M, Knebel S, Gartner J, Mikolajick T, Schroeder U, Nano Energy, 36, 381 (2017)
- Hoffmann M, Schroeder U, Kunneth C, Kersch A, Starschich S, Bottger U, Mikolajick T, Nano Energy, 18, 154 (2015)
- Park MH, Kim HJ, Kim YJ, Moon T, Kim KD, Hwang CS, Adv. Eng. Mater., 4, 140061 (2014)
- Kim KD, Lee YH, Gwon T, Kim TJ, Kim HJ, et al., Nano Energy, 39, 390 (2017)
- Park MH, Hwang CS, Topics in Applied Physics, p. 295, vol. 131, Springer, Dordrecht (2016).
- Park MH, Lee YH, Mikolajick T, Schroeder U, Hwang CS, MRS Commun., 8, 795 (2018)
- Mikolajick T, Slesazeck S, Park MH, Schroeder U, MRS Bull., 43, 340 (2018)
- Park MH, Shimizu T, Funakubo H, Schroeder U, Materials, Properties and Devices, p.193-216, Royston Road, Duxford, CB22 4QH, United Kingdom (2019).
- Shimizu T, Katayama K, Kiguchi T, Akama A, Konno TJ, Sakata O, Funakubo H, Sci. Rep., 6, 32931 (2016)
- Park MH, Chung CC, Schenk T, Richter C, Hoffmann M, Wirth S, Jones JL, Mikolajick T, Schroeder U, Adv. Electron. Mater., 4, 170048 (2018)
- Park MH, Mikolajick T, Schroeder U, Hwang CS, Phys. Status Solidi RRL, 13, 190017 (2019)
- Materlik R, Kunneth C, Kersch A, J. Appl. Phys., 117, 134109 (2015)
- Huan TD, Sharma V, Rossetti GA, Ramprasad R, Phys. Rev. B, 90, 064111 (2014)
- Lu SG, Zhang QM, Adv. Mater., 21(19), 1983 (2009)
- Li YL, Cross LE, Chen LQ, J. Appl. Phys., 98, 064101 (2005)
- Ackay G, Alpay SP, Mantese JV, Rossetti GA, Appl. Phys. Lett., 90, 252909 (2007)
- Wu X, Li G, Adv. Mater. Res., 335-336, 1004 (2011)
- Hamad MA, Phase Transitions, 85, 159 (2012)
- Li B, Ren WJ, Wang XW, Meng H, Liu XG, Wang ZJ, Zhang ZD, Appl. Phys. Lett., 96, 102903 (2010)
- Bai Y, Zheng GP, Ding K, Qiao L, Shi SQ, Guo D, J. Appl. Phys., 110, 094103 (2011)
- Mischenko AS, Zhang Q, Scott JF, Whatmore RW, Mathur ND, Science, 311, 1270 (2006)
- Chen H, Ren TL, Wu XM, Yang Y, Liu LT, Appl. Phys. Lett., 94, 182902 (2009)
- Neese B, Chu B, Lu SG, Wang Y, Furman E, Zhang QM, Science, 321, 821 (2008)
- Landau LD, Phys. Z. Sowjet., 11, 26 (1937)
- Devonshire AF, Philos. Mag., 40, 1040 (1949)
- Lines ME, Glass AM, p.1-42, Oxford University Press, Oxford, UK (2001).
- Lu X, Li H, Cao W, J. Appl. Phys., 114, 224106 (2013)
- Pertsev NA, Zembilgotov AG, Tagantsev AK, Phys. Rev. Lett., 80, 1988 (1998)
- Ducharme S, Fridkin VM, Bune AV, Palto SP, Blinov LM, Petukhova NN, Yudin SG, Phys. Rev. Lett., 84, 175 (2000)
- Li L, Niehaus O, Kersting M, Pottgen R, Appl. Phys. Lett., 104, 092416 (2014)
- Linsinger S, Hermes W, Eul M, Pottgen R, J. Appl. Phys., 108, 043903 (2010)
- Pecharsky VK, Gschneidner KA, Tsokol AO, Rep. Prog. Phys., 68, 1479 (2005)
- Phan MH, Peng HX, Yu SC, J. Appl. Phys., 97, 10M306 (2005)
- Phan MH, Tho ND, Chau N, Yu SC, Kurisu M, J. Appl. Phys., 97, 3215 (2005)
- Phan MH, Yu SC, J. Magn. Magn. Mater., 308, 325 (2007)
- Starshich S, Schenk T, Schroeder U, Boettger U, Appl. Phys. Lett., 110, 182905 (2017)