화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.89, 104-110, September, 2020
Allyl functionalized UiO-66 metal-organic framework as a catalyst for the synthesis of cyclic carbonates by CO2 cycloaddition
E-mail:
The conversion of epoxides to cyclic carbonates is one of the most common CO2 fixation reactions. Metalorganic frameworks (MOFs), due to their porosity, easily tunable properties and Lewis acidic sites, are extensively used in heterogeneous catalysis. In this paper, we report the derivatization of the metalorganic framework (MOF) UiO-66 (University of Oslo) with allyloxy groups to give UiO-66-BAT (BAT = bisallyloxyterephthalate). The catalyst was characterized by PXRD, BET, IR, SEM, digestion NMR and CO2 adsorption. UiO-66-BAT had a good CO2 uptake of 84 cc/g at 273K and a Qst value of 27.5 kJ mol-1. Due to the affinity of the allyloxy group toward CO2 and the proximity of the zirconium Lewis acid sites, we applied UiO-66-BAT as a catalyst for the conversion of epoxides to cyclic carbonates by using CO2. We showed that UiO-66-BAT converts propylene oxide (PO) to its corresponding cyclic carbonates at 50 °C, a 5 bar pressure, and a 6 h reaction time with a 95% yield. UiO-66-BAT also gave a good yield in the conversion of numerous aliphatic and aromatic epoxides. The catalysts exhibited a good recyclability for up to 9 cycles.
  1. Pachauri RK, Meyer LA, Synthesis Report, Intergovernmental Panel on Climate Change, Geneva, Switzerland, 2014.
  2. Mauna Loa Observatory (Hawaii), U.S. Department of Commerce, National Oceanic & Atmospheric Administration, www.esrl.noaa.gov/news/2013/CO2400.html (accessed 26.7.17).
  3. Aresta M, Dibenedetto A, Angelini A, Chem. Rev., 114(3), 1709 (2014)
  4. Li X, Yu JG, Jaroniec M, Chen XB, Chem. Rev., 119(6), 3962 (2019)
  5. Yaashikaa PR, Kumar PS, Varjani SJ, Saravanan A, J. CO2 Util., 33, 131 (2019)
  6. Kumar A, Madden DG, Lusi M, Chen KJ, Daniels EA, Curtin T, Perry JJ, Zaworotko MJ, Angew. Chem.-Int. Edit., 54, 14372 (2015)
  7. Lim XZ, Nature, 526(7575), 628 (2015)
  8. Klankermayer J, Leitner W, Science, 350(6261), 629 (2015)
  9. Chen KJ, Madden DG, Pham T, Forrest KA, Kumar A, Yang QY, Xue W, Space B, Perry JJ, Zhang JP, Chen XM, Zaworotko MJ, Angew. Chem.-Int. Edit., 55, 10268 (2016)
  10. Martens JA, Bogaerts A, De Kimpe N, Jacobs PA, Marin GB, Rabaey K, Saeys M, Verhelst S, ChemSusChem, 10, 1039 (2017)
  11. Lei Z, Xue Y, Chen W, Qiu W, Zhang Y, Horike S, Tang L, Adv. Eng. Mater., 8(1-37), 180158 (2018)
  12. Wang W, Wang S, Ma X, Gong J, Chem. Soc. Rev., 40, 3703 (2011)
  13. Kondratenko EV, Mul G, Baltrusaitis J, Larrazabal GO, Perez-Ramirez J, Energy Environ. Sci., 6, 3112 (2013)
  14. Appel AM, Bercaw JE, Bocarsly AB, Dobbek H, DuBois DL, Dupuis M, Ferry JG, Fujita E, Hille R, Kenis PJA, Kerfeld CA, Morris RH, Peden CHF, Portis AR, Ragsdale SW, Rauchfuss TB, Reek JNH, Seefeldt LC, Thauer RK, Waldrop GL, Chem. Rev., 113(8), 6621 (2013)
  15. Tamura M, Honda M, Nakagawa Y, Tomishige K, J. Chem. Technol. Biotechnol., 89(1), 19 (2014)
  16. Darensbourg DJ, Chem. Rev., 107(6), 2388 (2007)
  17. Boogaerts IIF, Nolan SP, J. Am. Chem. Soc., 132(26), 8858 (2010)
  18. Wang X, Zhou Y, Guo Z, Chen G, Li J, Shi Y, Liu Y, Wang J, Chem. Sci., 6, 6916 (2015)
  19. Subramanian S, Park J, Byun J, Jung Y, Yavuz CT, ACS Appl. Mater. Interfaces, 10, 9478 (2018)
  20. Liu M, Gao K, Liang L, Sun J, Sheng L, Arai M, Catal. Sci. Technol., 6, 6406 (2016)
  21. Cao CS, Shi Y, Xu H, Zhao B, Dalton Trans., 47, 4545 (2018)
  22. Kumatabara Y, Okada M, Shirakawa S, ACS Sustain. Chem. Eng., 5, 7295 (2017)
  23. Liu H, Huang Z, Han Z, King K, Liu H, Xia C, Chen J, Green Chem., 17, 4281 (2015)
  24. Ma R, He LN, Zhou YB, Green Chem., 18, 226 (2016)
  25. Elmas S, Subhani MA, Harrer M, Leitner W, Sundermeyer J, Muller TE, Catal. Sci. Technol., 4, 1652 (2014)
  26. Wilhelm ME, Anthofer MH, Cokoja M, Markovits IIE, Herrmann WA, Kuhn FE, ChemSusChem, 7, 1357 (2014)
  27. Song QW, He LN, Wang JQ, Yasuda H, Sakakura T, Green Chem., 15, 110 (2013)
  28. Sharma N, Dhankhar SS, Nagaraja CM, Microporous Mesoporous Mater., 280, 372 (2019)
  29. Xie Y, Zhang Z, Jiang T, He J, Han B, Wu T, Ding K, Angew. Chem.-Int. Edit., 46, 7255 (2007)
  30. Wang S He F, Tong WL, Yiu SM, Chan MCW, Chem. Commun., 52, 1017 (2016)
  31. Dhakshinamoorthy A, Asiri AM, Garcia H, Adv. Mater., 31, 190061 (2019)
  32. Masoomi MY, Morsali A, Dhakshinamoorthy A, Garcia H, Angew. Chem.-Int. Edit., 58, 15188 (2019)
  33. Dhakshinamoorthy A, Li Z, Garcia H, Chem. Soc. Rev., 47, 8134 (2018)
  34. Cai G, Ding M, Wu Q, Jiang HL, Natl. Sci. Rev., 7, 37 (2020)
  35. Dhakshinamoorthy A, Santiago-Portillo A, Asiri AM, Garcia H, ChemCatChem, 11, 899 (2019)
  36. Ding M, Jiang HL, ACS Catal., 8, 3194 (2018)
  37. Yang Q, Yang CC, Lin CH, Jiang HL, Angew. Chem.-Int. Edit., 58, 3511 (2019)
  38. Liu L, Zhang J, Fang H, Chen L, Su CY, Chem. Asian J., 11, 2278 (2016)
  39. Zhang L, Yuan S, Feng L, Guo B, Qin JS, Xu B, Lollar C, Sun D, Zhou HC, Angew. Chem.-Int. Edit., 57, 5095 (2018)
  40. Noh J, Kim Y, Park H, Lee J, Yoon M, Park MH, Kim Y, Kim MJ, Ind. Eng. Chem., 64, 478 (2018)
  41. Cavka JH, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Lillerud KP, J. Am. Chem. Soc., 130(42), 13850 (2008)
  42. Winarta J, Shan B, Mcintyre SM, Ye L, Wang C, Liu J, Mu B, Cryst. Growth Des., 20, 1347 (2020)
  43. Kronast A, Eckstein S, Altenbuchner PT, Hindelang K, Vagin SI, Rieger B, Chem. Eur. J., 22, 12800 (2016)
  44. Schneemann A, Bloch ED, Henke S, Llewellyn PL, Long JR, Fischer RA, Chem. Eur. J., 21, 18764 (2015)
  45. McDaniel JG, Yu K, Schmidt JR, J. Phys. Chem. C, 117, 17131 (2013)
  46. Helal A, Nguyen HL, Al-Ahmed A, Cordova KE, Yamani ZH, Inorg. Chem., 58(3), 1738 (2019)
  47. Shearer GC, Chavan S, Bordiga S, Svelle S, Olsbye U, Lillerud KP, Chem. Mater., 28, 3749 (2016)
  48. Hu ZG, Peng YW, Kang ZX, Qian YH, Zhao D, Inorg. Chem., 54(10), 4862 (2015)
  49. Beyzavi MH, Stephenson CJ, Liu Y, Karagiaridi O, Hupp JT, Farha OK, Front. Energy Res, 2, 1 (2015)