화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.89, 233-238, September, 2020
Schottky junction photodiode based on graphene-organic semiconductor heterostructure
E-mail:,
The isolation of graphene on an insulating substrate has provided new opportunities for the fabrication of electronic devices with radically new geometries and structures. The use of single-layer graphene as an electrode has enabled the development of novel electronic device architectures that exploit the unique atomically thin structure of the material, which also includes a low density of states at its charge neutrality point. In this work, we present the first example of a vertical Schottky junction photodiode based on the graphene.organic semiconductor.metal heterostructure. The n-type N,N0-dioctyl-3,4,9,10-perylenedicarboximide (PTCDI-C8) organic semiconductor was thermally deposited onto chemical vapor deposition (CVD)-grown single-layer graphene. The tunable Schottky injection barrier permitted tuning of the diode rectification ratio by more than two orders of magnitude upon application of gate biases, which increased the photocurrent but suppressed the dark current of the photodiodes. Tuning of the photovoltaic properties of the devices was also confirmed, indicating that the device architecture based on the work function tunability of graphene could provide a versatile strategy for enhancing the performance of organic photodiodes.
  1. Novoselov K, Geim AK, Morozov S, Jiang D, Katsnelson M, Grigorieva I, Dubonos S, Firsov A, Nature, 438, 197 (2005)
  2. Geim AK, Novoselov KS, Nat. Mater., 6(3), 183 (2007)
  3. Katsnelson MI, Mater. Today, 10, 20 (2007)
  4. Lee C, Wei XD, Kysar JW, Hone J, Science, 321, 385 (2008)
  5. Geim AK, Science, 324, 1530 (2009)
  6. Neto AC, Guinea F, Peres NM, Novoselov KS, Geim AK, Rev. Mod. Phy., 81, 109 (2009)
  7. Wu YQ, Lin YM, Bol AA, Jenkins KA, Xia FN, Farmer DB, Zhu Y, Avouris P, Nature, 472(7341), 74 (2011)
  8. Abanin DA, Feldman BE, Yacoby A, Halperin BI, Phys. Rev. B, 88, 115407 (2013)
  9. Schwierz F, Nat. Nanotechnol., 5(7), 487 (2010)
  10. Han MY, Ozyilmaz B, Zhang YB, Kim P, Phys. Rev. Lett., 98, 206805 (2007)
  11. Balog R, Jorgensen B, Nilsson L, Andersen M, Rienks E, Bianchi M, Fanetti M, Laegsgaard E, Baraldi A, Lizzit S, Sljivancanin Z, Besenbacher F, Hammer B, Pedersen TG, Hofmann P, Hornekaer L, Nat. Mater., 9(4), 315 (2010)
  12. Xia FN, Farmer DB, Lin YM, Avouris P, Nano Lett., 10, 715 (2010)
  13. Lemaitre MG, Donoghue EP, McCarthy MA, Liu B, Tongay S, Gila B, Kumar P, Singh RK, Appleton BR, Rinzler AG, ACS Nano, 6, 9095 (2012)
  14. Ojeda-Aristizabal C, Bao W, Fuhrer M, Phys. Rev. B, 88, 035435 (2013)
  15. He D, Zhang Y, Wu Q, Xu R, Nan H, Liu J, Yao J, Wang Z, Yuan S, Li Y, Nat. Commun., 5, 5162 (2014)
  16. Liu Y, Zhou H, Cheng R, Yu W, Huang Y, Duan X, Nano Lett., 14, 1413 (2014)
  17. Shih CJ, Wang QH, Son Y, Jin Z, Blankschtein D, Strano MS, ACS Nano, 8, 5790 (2014)
  18. KimK, Lee TH, Santos EJG, Jo PS, Salleo A, Nishi Y, Bao ZN, ACS Nano, 9, 5922 (2015)
  19. Oh G, Kim JS, Jeon JH, Won E, Son JW, Lee DH, Kim CK, Jang J, Lee T, Park BH, ACS Nano, 9, 7515 (2015)
  20. Parui S, Pietrobon L, Ciudad D, Velez S, Sun X, Casanova F, Stoliar P, Hueso LE, Adv. Funct. Mater., 25(20), 2972 (2015)
  21. Shih CJ, Pfattner R, Chiu YC, Liu N, Lei T, Kong DS, Kim Y, Chou HH, Bae WG, Bao ZN, Nano Lett., 15, 7587 (2015)
  22. Wu B, Zhao YH, Nan HY, Yang ZY, Zhang YH, Zhao HJ, He DW, Jiang ZL, et al., Nano Lett., 16, 3754 (2016)
  23. Yang H, Heo J, Park S, Song HJ, Seo DH, Byun KE, Kim P, Yoo I, Chung HJ, Kim K, Science, 336(6085), 1140 (2012)
  24. Georgiou T, Jalil R, Belle BD, Britnell L, Gorbachev RV, Morozov SV, Kim YJ, Gholinia A, Haigh SJ, Makarovsky O, Eaves L, Ponomarenko LA, Geim AK, Novoselov KS, Mishchenko A, Nat. Nanotechnol., 8(2), 100 (2013)
  25. Yu WJ, Li Z, Zhou HL, Chen Y, Wang Y, Huang Y, Duan XF, Nat. Mater., 12(3), 246 (2013)
  26. Hlaing H, Kim CH, Carta F, Nam CY, Barton RA, Petrone N, Hone J, Kymissis I, Nano Lett., 15, 69 (2014)
  27. Kim BJ, Hwang E, Kang MS, Cho JH, Adv. Mater., 27(39), 5875 (2015)
  28. Shih CJ, Pfattner R, Chiu YC, Liu N, Lei T, Kong D, Kim Y, Chou HH, Bae WG, Bao Z, Nano Lett., 15, 7587 (2015)
  29. Choi Y, Kang JM, Jariwala D, Kang MS, Marks TJ, Hersam MC, Cho JH, Adv. Mater., 28(19), 3742 (2016)
  30. Kang J, Jariwala D, Ryder CR, Wells SA, Choi Y, Hwang E, Cho JH, Marks TJ, Hersam MC, Nano Lett., 16, 2580 (2016)
  31. Kim JS, Kim BJ, Choi YJ, Lee MH, Kang MS, Cho JH, Adv. Mater., 28(24), 4803 (2016)
  32. Kim JS, Choi YJ, Woo HJ, Yang J, Song YJ, Kang MS, Cho JH, Adv. Funct. Mater., 27, 170447 (2017)
  33. Choi YJ, Kim JS, Cho JY, Woo HJ, Yang J, Song YJ, Kang MS, Han JT, Cho JH, Chem. Mater., 30, 636 (2018)
  34. Kim S, Choi YJ, Choi Y, Kang MS, Cho JH, Adv. Funct. Mater., 27, 170065 (2017)
  35. Sze SM, Ng KK, Physics of Semiconductor Devices, Wiley-Interscience, New Jersey, 2007.
  36. Gupta V, Chaudhary N, Srivastava R, Sharma GD, Bhardwaj R, Chand S, J. Am. Chem. Soc., 133(26), 9960 (2011)
  37. Kim H, Bae SH, Han TH, Lim KG, Ahn JH, Lee TW, Nanotechnology, 25, 014012 (2014)
  38. Yin ZY, Zhu JX, He QY, Cao XH, Tan CL, Chen HY, Yan QY, Zhang H, Adv. Eng. Mater., 4, 130057 (2014)
  39. Hu XT, Chen L, Ji T, Zhang Y, Hu AF, Wu FY, Li G, Chen YW, Adv. Mater. Interfaces, 2, 150044 (2015)
  40. Pierre A, Deckman I, Lechene PB, Arias AC, Adv. Mater., 27(41), 6411 (2015)
  41. Baeg KJ, Binda M, Natali D, Caironi M, Noh YY, Adv. Mater., 25(31), 4267 (2013)
  42. Jansen-van Vuuren RD, Armin A, Pandey AK, Burn PL, Meredith P, Adv. Mater., 28(24), 4766 (2016)
  43. Liu S, Wei ZM, Cao Y, Gan L, Wang ZX, Xu W, Guo XF, Zhu DB, Chem. Sci., 2, 796 (2011)
  44. An XH, Liu FZ, Jung YJ, Kar S, Nano Lett., 13, 909 (2013)
  45. Rahimi R, Roberts A, Narang V, Kumbham VK, Korakakis D, Opt. Mater., 35, 1077 (2013)
  46. Yu YJ, Zhao Y, Ryu S, Brus LE, Kim KS, Kim P, Nano Lett., 9, 3430 (2009)
  47. Kazaoui S, Minami N, Nalini B, Kim Y, Hara K, J. Appl. Phys., 98, 084314 (2005)
  48. Koppens FHL, Mueller T, Avouris P, Ferrari AC, Vitiello MS, Polini M, Nat. Nanotechnol., 9(10), 780 (2014)
  49. Guo FW, Xiao ZG, Huang JS, Adv. Opt. Mater., 1, 289 (2013)
  50. Kim YJ, Park CE, Chung DS, Phys. Chem. Chem. Phys., 16, 18472 (2014)
  51. Gong X, Tong MH, Xia YJ, Cai WZ, Moon JS, Cao Y, Yu G, Shieh CL, Nilsson B, Heeger AJ, Science, 325, 1665 (2009)
  52. Zhu M, Li XM, Guo YB, Li X, Sun PZ, Zang XB, Wang KL, Zhong ML, Wu DH, Zhu HW, Nanoscale, 6, 4909 (2014)
  53. Li XM, Zhu HW, Wang KL, Cao AY, Wei JQ, Li CY, Jia Y, Li Z, Li X, Wu DH, Adv. Mater., 2, 2743 (2010)
  54. Miao XC, Tongay S, Petterson MK, Berke K, Rinzler AG, Appleton BR, Hebard AF, Nano Lett., 12, 2745 (2012)
  55. Mohammed M, Li ZR, Cui JB, Chen TP, Nanoscale Res. Lett., 7, 1 (2012)
  56. Xie C, Jie JS, Nie BA, YAn TX, Li Q, Lv P, Li FZ, Wang MZ, Wu CY, Wang L, Luo LB, Appl. Phys. Lett., 100, 193103 (2012)
  57. Song Y, Li XM, Mackin C, Zhang X, Fang WJ, Palacios T, Zhu HW, Kong J, Nano Lett., 15, 2104 (2015)