화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.89, 334-338, September, 2020
Consistent room temperature electrochemical reduction of gaseous chlorobenzene to value-added intermediates by electroscrubbing
E-mail:
The dehalogenation of gaseous chlorobenzene (CB) to useful intermediates at ambient temperature is desirable. In this study, gaseous CB was dehalogenated to useful intermediates using an electrochemically generated homogeneous low-valent electron mediator in an electroscrubbing column at ambient temperature. A homogenous electron mediator [Ni(I)(CN)4]3- (Ni(I) low-valent) was generated at the cathodic half-cell using a membrane-divided electrolytic cell and quantified by oxidation/reduction potential (ORP) variations with a potentiometric titration. CB removal according to a mediated electrocatalytic reduction (MER) process, was confirmed by the change in electrogenerated Ni(I) from 4.2 mM to 2.8 mM during the degradation of CB. A Fourier transform infrared gas analyzer and chlorine sensor showed that 100% of 15 ppm CB at a 0.2 L min-1 flow rate had been removed by the MER process with CO2 as the gaseous product. At the same time, the phenoxide anion was found in the resulting solutions, which is a starting material in many pharmaceutical industries. The developed method and possible generation of a homogenous electron mediator on CB dehalogenation to useful intermediates at ambient temperature is a practical technology.
  1. Rapp P, Timmis KN, Appl. Environ. Microbiol., 65, 2547 (1999)
  2. Hirota K, Hakoda T, Arai H, Hashimoto S, Radiat. Phys. Chem., 57, 63 (2000)
  3. den Besten C, Vet JJRM, Besselink HT, Kiel GS, van Berkel BJM, Beems R, van Bladeren PJ, Toxicol. Appl. Pharm., 111, 69 (1991)
  4. Djohan D, Yu J, Connell D, Christensen E, J. Toxicol. Environ. Health Part A, 70, 1594 (2007)
  5. Bakoglu M, Karademir A, Ayberk S, J. Occup. Health, 46, 156 (2004)
  6. Bhatkhande DS, Sawant SB, Schouten JC, Pangarkar VG, J. Chem. Technol. Biotechnol., 79(4), 354 (2004)
  7. Sedlak DL, Andren AW, Environ. Sci. Technol., 25, 777 (1991)
  8. Hofmann J, Freier U, Wecks M, Demund A, Top. Catal., 33, 243 (2005)
  9. Liu Y, Wu WC, Guan YJ, Ying PL, Li C, Langmuir, 18(16), 6229 (2002)
  10. Dewulf J, Van Langenhove H, De Visscher A, Sabbe S, Ultrason. Sonochem, 8, 143 (2001)
  11. Chen GH, Sep. Purif. Technol., 38(1), 11 (2004)
  12. Mann CK, Barnes KK, Electrochemical Reactions in Nonaqueous Systems, Dekker, New York, 1970 (Chapter 7).
  13. Kiesele H, Heinze J, Organic Electrochemistry, Third ed., Dekker, New York, 1990 (Chapter 7).
  14. Hoshi N, Haga A, Hori Y, Electrochemistry, 72, 852 (2004)
  15. Liu L, Zhao GH, Wu MF, Lei YZ, Geng R, J. Hazard. Mater., 168(1), 179 (2009)
  16. Luo C, Chen Z, Wu DL, Ma LM, Chem. Eng. J., 241, 376 (2014)
  17. Gach PC, Mubarak MS, Karty JA, Peters DG, J. Electrochem. Soc., 154(1), F1 (2007)
  18. Wang J, Mei Y, Liu C, Chen J, J. Environ. Sci., 20, 1306 (2008)
  19. Musilova-Kebrlova N, Janderka P, Trnkova L, Collect. Czech. Chem. Commun., 74, 611 (2009)
  20. March J, Advanced Organic Chemistry, 4th ed., John Wiley & Sons, New York, pp501 1999.
  21. Wang C, Xi JY, Hu HY, J. Air Waste Manage. Assoc., 59, 386 (2009)
  22. Ebrahimi H, Bahrami A, Jaleh B, Shahna FG, Fresenius Environ. Bull., 24, 1871 (2015)
  23. Muthuraman G, Moon IS, ACS Sustain. Chem. Eng., 4, 1364 (2016)
  24. Muthuraman G, Ramu AG, Moon IS, J. Hazard. Mater., 311, 210 (2016)
  25. Muthuraman G, Ramu AG, Cho Y, McAdam E, Moon IS, Waste Manage. Res., 36, 1043 (2018)
  26. Fernelius WC, Burbage JJ, Ballou NE, Inorganic Syntheses, John Wiley & Sons, Inc., New York, pp.227 2007.
  27. Govindan M, Bond AM, Moon IS, Sci. Rep., 7, 29 (2017)
  28. Govindan M, Gopal RA, Moon IS, Chem. Eng. J., 308, 1145 (2017)
  29. Liptak MD, Gross KC, Seybold PG, Feldgus S, Shields GC, J. Am. Chem. Soc., 124(22), 6421 (2002)
  30. Siam M, Reiter G, Hunziker R, Escher B, Karpfen A, Simperler A, Baurecht D, Fringeli JP, Biochim. Biophys. Acta Biomembr., 1664, 88 (2004)
  31. Ouellette RJ, Rawn JD, Organic Chemistry, Elsevier, Boston, pp.843 2014.
  32. Azevedo AF, Souza FA, Matsushima JT, Baldan MR, Ferreira NG, J. Electroanal. Chem., 658(1-2), 38 (2011)