화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.89, 400-408, September, 2020
Sequential improvement of activated carbon fiber properties for enhanced removal efficiency of indoor CO2
E-mail:
For effective capture of low-level indoor CO2, a polyacrylonitrile (PAN) solution was doped with potassium hydroxide (KOH) before electrospinning to increase the specific surface area and microporosity of the resulting activated carbon nanofiber (ANF). Additionally, the KOH-doped ANF was treated with tetraethylenepentamine (TEPA) in ethanol to introduce nitrogen functionalities favorable for CO2 adsorption on the surface. The sequential improvements of the physical and chemical properties of ANF were carried out at a PAN: KOH mass ratio of 1:0-0.05 and TEPA solution concentrations of 1, 2, and 3%. The effects of KOH and TEPA on the structure and chemical properties were investigated using a Monosorb instrument, a field-emission scanning electron microscope, a thermogravimetric analyzer, and an x-ray photoelectron spectrometer. In terms of the textural improvements resulting from KOH doping, a sample of 0.03-ANF showed a significant increase in specific surface area: from 94.59 for pristine ANF to 469.09 m2/g after treatment. The XPS(X-ray photoelectron spectroscopy) examinations also showed a large increase in the content of the nitrogen-containing functional groups on the sample treated with TEPA, thereby increasing the selective adsorption capacity of 0.3% CO2 by 21-fold. The combination of textural enhancement by KOH impregnation and surface chemistry enhancement provided by the TEPA doping improved the low- level CO2 capture capability of ANF.
  1. Park J, Lee TJ, PArk MJ, Oh H, Jo YM, Build. Environ., 167, 106437 (2020)
  2. Serna-Guerrero R, Sayari A, Chem. Eng. J., 161(1-2), 182 (2010)
  3. Satish U, Mendell MJ, Shekhar K, Hotchi T, Sullivan D, Streufert S, Fisk WJ, Environ. Health Perspect., 120, 1671 (2012)
  4. Vehvilainen T, Lindholm H, Rintamaki H, Paakkanen R, Hirvonen A, Niemi O, Vinha J, J. Occup. Environ. Hyg., 13, 19 (2016)
  5. Moloney P, Huffman C, Gorelik O, Nikolaev P, Arepalli S, Allada R, Springer M, Yowell L, Mater. Res. Soc., 851, 59 (2005)
  6. Ye Q, Jiang JQ, Wang CX, Liu YM, Pan H, Shi Y, Energy Fuels, 26(4), 2497 (2012)
  7. Liu YM, Ye Q, Shen M, Shi JJ, Chen J, Pan H, Shi Y, Environ. Sci. Technol., 45, 5710 (2011)
  8. Plaza MG, Pevida C, Arenillas A, Rubiera F, Pis JJ, Fuel, 86(14), 2204 (2007)
  9. Jiao J, Cao J, Xia Y, Zhao LZ, Chem. Eng. J., 306, 9 (2016)
  10. Wang JT, Wang M, Li WC, Qiao WM, Long DH, Ling LC, AIChE J., 61(3), 972 (2015)
  11. Yu J, Chuang SSC, Ind. Eng. Chem. Res., 56(21), 6337 (2017)
  12. Liu Y, Shi J, Chen J, Ye Q, Pan H, Shao Z, Shi Y, Microporous Mesoporous Mater., 134, 16 (2010)
  13. Lee SY, Park SJ, J. Colloid Interface Sci., 389, 230 (2013)
  14. Lim HYH, CO2 capture using amino acid salts and fixation by alkali aqueous solution, Doctoral Dissertation, Kyung Hee University, Korea, 2014.
  15. Im JS, Park SJ, Kim TJ, Kim YH, Lee YS, J. Colloid Interface Sci., 318, 42 (2008)
  16. Zhang BB, Liu YQ, Ye YY, Mod. Chem. Ind., 3, 34 (2014)
  17. Gregg SJ, Sing KSW, Adsorption, Surface Area and Porosity. 2. Auflage, Academic Press,London,1982.
  18. Jung DW, Preparation of Activated Carbon Nanofiber for Low level CO2 Capture, Master Dissertation, Kyung Hee University, Korea, 2018.
  19. Xu Q, Master Dissertation, Shandong Institute of Light Industry, Jinan, China, 2010.
  20. http://muchong.com/html/201709/11707097.html?guest=1 (accessed 21 Sept. 2019).
  21. Hiden Isochema https://hidenisochema.com/glossary/barrett-joyner-halenda-bjh-analysis/ (accessed 21 Sept. 2019).
  22. Shafeeyan MS, Daud WMAW, Houshmand A, Shamiri A, J. Anal. Appl. Pyrolysis, 89, 143 (2010)
  23. Lim YH, Adelodun AA, Kim DW, Jo YM, Asian J. Atmos. Environ., 10, 99 (2016)
  24. Lim G, Lee KB, Ham HC, J. Phys. Chem. C, 120, 8087 (2016)
  25. Chiang YC, Chen YJ, Wu CY, Materials, 10, 1296 (2017)
  26. Adelodun AA, Jo YM, Appl. Surf. Sci., 286, 306 (2013)
  27. Adelodun AA, Lim YH, Jo YM, J. Anal. Appl. Pyrolysis, 105, 191 (2014)
  28. Adelodun AA, Kim KH, Ngila JC, Szulejko J, Appl. Energy, 158, 631 (2015)
  29. Park HS, Surface alkali treatment of AC adsorbents to improve CO2 capture capacity, Master Dissertation, Kyung Hee University, Korea, 2016.
  30. Kim HK, Porous ceramic composite filters for indoor CO2 adsorption, Doctoral Dissertation, Kyung Hee University, Korea, 2008.
  31. Hwang SH, Preparation and characterization of activated carbon fiber for CO2 capture, Master Dissertation, Kyung Hee University, Korea, 2016.