Korean Chemical Engineering Research, Vol.58, No.4, 588-595, August, 2020
인공지능 기반 질소산화물 배출량 예측을 위한 연구모형 개발
Development of Prediction Model for Nitrogen Oxides Emission Using Artificial Intelligence
E-mail:
초록
지속적으로 강화되는 환경오염 물질 배출 규제로 인해, 질소 산화물(NOx)의 배출량 예측 및 관리는 산업 현장에서 많은 관심을 받고 있다. 본 연구에서는 인공지능 기반 질소산화물 배출량 예측모델 개발을 위한 연구모형을 제안하였다. 제안된 연구모형은 데이터의 전처리 과정부터 인공지능 모델의 학습 및 평가까지 모두 포함하고 있으며, 시계열 특성을 가지는 NOx 배출량을 예측하기 위하여 순환 신경망 중 하나인 Long Short-Term Memory (LSTM) 모델을 활용하였다. 또한 의사결정나무 기법을 활용하여 LSTM의 time window를 모델 학습 이전에 선정하는 방법을 채택하였다. 본 연구에서 제안된 연구모형의 NOx 배출량 예측 모델은 가열로에서 확보한 조업 데이터로 학습되었으며, 최적 모델은 hyper-parameter를 조절하여 개발되었다. 개발된 LSTM 모델은 학습 데이터 및 평가 데이터에 대하여 모두 93% 이상의 NOx 배출량 예측 정확도를 나타내었다. 본 연구에 제안된 연구모형은 시계열 특성을 가지는 다양한 대기오염 물질의 배출량 예측모델 개발에 응용될 수 있을 것으로 기대된다.
Prediction and control of nitrogen oxides (NOx) emission is of great interest in industry due to stricter environmental regulations. Herein, we propose an artificial intelligence (AI)-based framework for prediction of NOx emission. The framework includes pre-processing of data for training of neural networks and evaluation of the AI-based models. In this work, Long-Short-Term Memory (LSTM), one of the recurrent neural networks, was adopted to reflect the time series characteristics of NOx emissions. A decision tree was used to determine a time window of LSTM prior to training of the network. The neural network was trained with operational data from a heating furnace. The optimal model was obtained by optimizing hyper-parameters. The LSTM model provided a reliable prediction of NOx emission for both training and test data, showing an accuracy of 93% or more. The application of the proposed AI-based framework will provide new opportunities for predicting the emission of various air pollutants with time series characteristics.
- Studzinski W, Liiva P, Choate P, Acker W, SAE Tech. Pap., 932815(1993).
- Lee H, National Assembly Research Service, 36 (2019).
- Karim ZAA, Khan MY, Rashid A, Aziz A, Hagos FY, Platform : A Journal of Engineering, 3, 1-21(2019).
- Xu M, Azevedo JLT, Carvalho MG, Fuel, 79, 1611 (2000)
- Khoshhal A, Rahimi M, Alsairafi AA, Int. Commun. Heat Mass Transfer, 38, 1421 (2011)
- Ferretti G, Piroddi L, J. Eng. Gas Turbines Power, 123, 465 (2001)
- Reinbacher F, Regele JD, Combust. Theor. Model., 22, 110 (2018)
- Joo S, Yoon J, Kim J, Lee M, Yoon Y, Appl. Therm. Eng., 80, 436 (2015)
- Park C, Kim Y, J. Korean Soc. Qual. Manag., 46, 739 (2018)
- Taghavifar H, Taghavifar H, Mardani A, Mohebbi A, Fuel, 125, 81 (2014)
- Tabachnick J, Fidell BG, Ullman LS, Using Multivariate Statistics, Pearson Education, London (2007).
- Meyler A, Kenny G, Quinn T, Munich Personal RePEc Archive, 11359 (1998)
- Khashei M, Bijari M, Raissi Ardali GA, Neurocomputing, 72(4-6), 956 (2009)
- Zhang G, Patuwo BE, Hu MY, Int. J. Forecast., 14(1), 35 (1998)
- Song X, Liu Y, Xue L, Wang J, Zhang J, Wang J, Jiang L, Cheng Z, J. Petrol. Sci. Eng., 186, 106682 (2020)
- Li Y, Cao H, Procedia Comput. Sci., 129, 277 (2018)
- Karakoyun ES, Cıbıkdiken AO, Proceedings of the Multidisciplinary Academic Conference, 171-179(2018).
- Junninen H, Niska H, Tuppurainen K, Ruuskanen J, Kolehmainen M, Atmos. Environ., 38, 2895 (2004)
- Sola J, Sevilla J, IEEE Trans. Nucl. Sci., 44, 1464 (1997)
- Benesty J, Chen J, Huang Y, Cohen I, Noise Reduction in Speech Processing, Springer-Verlag Berlin Heidelberg(2009).
- Kuhn M, J. Stat. Softw., 28, 1 (2008)
- Kwon SH, Lee J, Chung G, J. Korean Soc. Hazard Mitig., 17, 315 (2017)
- Dong C, Jin B, Li D, Waste Manage., 23, 103 (2003)
- Taghavifar H, Taghavifar H, Mardani A, Mohebbi A, Khalilarya S, Jafarmadar S, J. Clean Prod., 112, 1729 (2016)
- Chattopadhyay S, Acta Geophys., 55, 369 (2007)
- Connor JT, Martin RD, Atlas LE, EEE Trans. Neural Networks, 5, 240 (1994)
- Hochreiter S, Neural Comput., 1780, 1735 (1997)
- Olah C, Retrieved from http://colah.github.io/posts/2015-08-Understanding-LSTMs/.
- Freeman BS, Taylor G, Gharabaghi B, The J, J. Air Waste Manage. Assoc., 68, 866 (2018)
- Selvin S, Vinayakumar R, Gopalakrishnan EA, Menon VK, Soman KP, 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI), 1643-1647(2017).
- Safavian SR, Landgrebe D, IEEE Trans. Syst. Man. Cybern, 21, 660 (1991)