화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.58, No.4, 665-674, August, 2020
외부순환 공기부양반응기에서 낮은 주파수의 압력 변동
Low-Frequency Pressure Fluctuations in an External-Loop Airlift Reactor
E-mail:
초록
외부순환형 공기부양반응기에서 낮은 주파수의 압력 변동에 대해 연구하였다. 상승관과 하강관의 상부와 하부에 설치된 내압관의 액면을 휴대폰으로 촬영하는 방법으로 빠른 주파수의 변동이 제거된 압력을 측정하였다. 자기상관함수와 교차상관함수의 계산을 통해 압력의 주기적인 변동을 확인하였다. 기체속도가 일정하여도 순환액체의 관성으로 인해 압력은 물론이고 상승관과 하강관내의 기체체류량도 주기적으로 변동하였다. 일반적으로 기체유속이 증가할수록 압력 변동의 강도는 커졌다. 비분산 액체높이가 0.04 m일 때 압력 변동의 주기는 기체속도가 0.14 ms-1에서 극대값을 보여주었다. 이는 기체속도가 커질수록 순환 액체속도의 증가율은 둔화하고 효과적으로 순환하는 액체의 부피가 감소하므로 순환액체의 관성이 극대값을 보이기 때문이다.
Low-frequency pressure fluctuations in an external-loop airlift reactor were investigated. Low-frequency pressure fluctuations could be measured by shooting videos about liquid levels in the four piezometric tubes which were installed at the lower and upper parts of the riser and downcomer using a cellular phone. The periodic characteristics of pressure fluctuations were proved by the calculation of their auto-correlation function and cross-correlation function. Even if the riser superficial gas velocity was constant, the riser and downcomer gas holdups as well as wall pressures were periodically changed due to the inertia of circulating liquid. In general, the intensity of pressure fluctuations increased with an increase in the gas velocity. When the unaerated liquid height was 0.04 m, the maximum period of pressure fluctuations was found at the specific gas velocity (0.14 ms-1). It was because the maximum inertia of circulating liquid resulted from a reduction in the increasing rate of the liquid circulation velocity and a decrease in the volume of the effectively circulating liquid with an increase in the gas velocity.
  1. Chisti MY, Moo-Young M, Chem. Eng. Commun., 60, 195 (1987)
  2. Merchuk JC, Siegel H, J. Chem. Technol. Biotechnol., 41, 105 (1988)
  3. Siegel MH, Robinson CW, Chem. Eng. Sci., 47, 3215 (1992)
  4. CHOI KH, KIM JW, LEE WK, Korean J. Chem. Eng., 3(2), 127 (1986)
  5. Choi KH, Han BH, Lee WK, HWAHAK KONGHAK, 28(2), 220 (1990)
  6. Choi KH, Lee WK, Chem. Technol. Biotechnol., 56, 51 (1993)
  7. Choi KH, Chisti Y, Mooyoung M, J. Chem. Technol. Biotechnol., 62(4), 327 (1995)
  8. Choi KH, Chisti Y, Moo-Young M, Chem. Eng. Commun., 138, 171 (1995)
  9. Choi KH, Korean J. Chem. Eng., 16(4), 441 (1999)
  10. Choi KH, Chem. Eng. Commun., 189, 25 (2002)
  11. Choi KH, Chem. Eng. Commun., 194(9), 1215 (2007)
  12. Lukic NL, Sijacki IM, Kojic PS, Popovic SS, Tokic MN, Biochem. Eng. J., 118, 53 (2017)
  13. van der Schaaf J, Schouten JC, Johnsson F, van den Bleek CM, Int. J. Multiph. Flow, 28(5), 865 (2002)
  14. Zhang WH, Li XG, Chem. Eng. Sci., 64(5), 1009 (2009)
  15. Glasgow LA, Erickson LE, Lee CH, Patel S, Chem. Eng. Commun., 29, 311 (1984)
  16. Vial C, Camarasa E, Poncin S, Wild G, Midoux N, Bouillard J, Chem. Eng. Sci., 55(15), 2957 (2000)
  17. Vial C, Poncin S, Wild G, Midoux N, Chem. Eng. Process., 40(2), 135 (2001)
  18. Fu CC, Fan LS, Wu WT, Chem. Eng. Technol., 30(8), 1077 (2007)
  19. Zhang WH, Li H, Li XG, Chem. Eng. J., 162(1), 296 (2010)
  20. Luo L, Yan Y, xie P, Sun J, Xu Y, Yuan J, Chem. Eng. J., 181-182, 570 (2012)
  21. Philip J, Proctor JM, Niranjan K, Davidson JF, Chem. Eng. Sci., 45, 651 (1990)
  22. Kojic PS, Popovic SS, Tokic MS, Sijacki IM, Lukic NL, Jovicevic DZ, Petrovic DL, Braz. J. Chem. Eng., 34, 493 (2017)
  23. Chatfield C, The Analysis of Time Series: An Introduction, Chapman and Hall, London(1984).
  24. Welsh WF, Publications of the Astronomical Society of the Pacific, 111, 1347-1366(1999).