Applied Chemistry for Engineering, Vol.31, No.5, 475-480, October, 2020
Cu(II)-Lactic Acid와 Cu(II)-LMWS-Chitosan 착물의 DFP 가수분해반응 연구
Hydrolysis of DFP Using Cu(II)-Lactic Acid and Cu(II)-LMWS-Chitosan Chelates
E-mail:
초록
Lactic acid와 키토산을 Cu(II) 이온과 반응시켜 합성한 착물을 사용하여 유기인 유사 독성물질인 DFP (Diisopropyl fluorophosphate) 분해반응에 적용하였다. Cu(II)-lactic acid 착물의 경우 homogeneous 상태에서 분해반응 반감기가 37. 1 min으로 분해성능이 우수하였다. 1 kDa 저분자량 수용성 키토산으로 합성한 Cu(II)-LMWS chitosan 착물은 결정화 후에는 용해도가 낮아 heterogeneous 한 상태에서 분해반응이 진행되었으며 그 반감기는 32.9 h이었다. 이 결과는 기존에 연구 된 18 kDa 키토산 Cu(II)착물의 분해반응속도보다 약 16배 정도 증가된 것이다. Cu(II)-LMWS chitosan 착물을 결정화하지 않고 homogeneous한 상태로 진행한 분해반응에서는 반감기가 8.75 h로 용해도에 따라 약 4배의 차이를 확인할 수 있었다.
Chelates synthesized with Cu(II) ion and lactic acid or chitosan were applied to the hydrolysis of organophosphate simulant, DFP (diisopropyl fluorophosphate). Under the homogeneous reaction condition, Cu(II)-lactic acid chelate hydrolyzed DFP with the half life time of 37.1 min. Cu(II)-LMWS chitosan chelate was synthesized with 1 kDa molecular weight of chitosan, which showed low solubility, and then crystallized. The half life time for hydrolyzing DFP using Cu(II)-LMWS chitosan was 32.9 h indicating that the reaction rate is enhanced as much as 16 times more than that of using 18 kDa chitosan-Cu(II) complex. Under the homogeneous reaction condition, the half life time of Cu(II)-LMWS chitosan was 8.75 h. Therefore, we found out that the solubility of Cu(II)-LMWS chitosan makes the difference in the reaction rate as much as 4 times.
- Yang YC, Baker JA, Ward JR, Chem. Rev., 92, 1729 (1992)
- Kim K, Tsay OG, Atwood DA, Churchill DG, Chem. Rev., 111(9), 5345 (2011)
- Moss RA, Alwis KW, Bizzigotti GO, J. Am. Chem. Soc., 105, 681 (1983)
- Morales-Rojas H, Moss RA, Chem. Rev., 102(7), 2497 (2002)
- Gustafson RL, Chaberek S, Martell AE, J. Am. Chem. Soc., 85, 598 (1963)
- Kye YS, Jeong K, Chung WY, Appl. Chem. Eng., 21(1), 1 (2010)
- Sharma N, Kakkar R, Adv. Mater Lett., 4, 508 (2013)
- Moon SY, Proussaloglou E, Peterson GW, DeCoste JB, Hall MG, Howarth AJ, Hupp JT, Farha OK, Chem. Eur. J., 22, 14864 (2016)
- Liu Y, Howarth AJ, Vermeulen NA, Moon SY, Hupp JT, Farha OK, Coord. Chem. Rev., 346, 101 (2017)
- de Koning MC, van Grol M, Breijaert T, Inorg. Chem., 56(19), 11804 (2017)
- Islamoglu T, Atilgan A, Moon SY, Peterson GW, DeCoste JB, Hall M, Hupp JT, Farha OK, Chem. Mater., 29, 2672 (2017)
- Kumar MNVR, Muzzarelli RAA, Muzzarelli C, Sashiwa H, Domb AJ, Chem. Rev., 104(12), 6017 (2004)
- Schmuhl R, Krieg HM, Keizer K, Water SA, 27, 1 (2001)
- Sulakova R, Hrdina R, Soares GMB, Dyes Pigment., 73, 19 (2007)
- McGowan P, Rayner C, Blackburn R, Angew. Chem.-Int. Edit., 50, 291 (2011)
- Bartelt-Hunt SL, Knappe DRU, Barlaz MA, Crit. Rev. Environ. Sci. Technol., 38, 112 (2008)
- Jeong KH, Shim JM, Chung WY, Kye YS, Kim DW, Appl. Organomet. Chem., 32, e4383 (2018)
- Kye YS, Chung WY, Kim DW, Park YK, Song SU, Jeong KH, J. KIMST, 15, 699 (2012)
- Hay RW, Govan N, Polyhedron, 17, 2079 (1998)
- Nah JW, Jang MK, J. Polym. Sci. A: Polym. Chem., 40(21), 3796 (2002)
- Monteiro OAC, Airoldi C, J. Colloid Interface Sci., 212(2), 212 (1999)
- Yu K, Ho J, McCandlish E, Buckley B, Patel R, Li Z, Shapley NC, Colloids Surf. A: Physicochem. Eng. Asp., 425, 31 (2013)
- Bajwa SZ, Lieberzeit PA, Sens. Actuators B-Chem., 207, 976 (2015)
- Cai Y, Zheng L, Fang Z, RSC Adv., 5, 97435 (2015)