화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.31, No.5, 475-480, October, 2020
Cu(II)-Lactic Acid와 Cu(II)-LMWS-Chitosan 착물의 DFP 가수분해반응 연구
Hydrolysis of DFP Using Cu(II)-Lactic Acid and Cu(II)-LMWS-Chitosan Chelates
E-mail:
초록
Lactic acid와 키토산을 Cu(II) 이온과 반응시켜 합성한 착물을 사용하여 유기인 유사 독성물질인 DFP (Diisopropyl fluorophosphate) 분해반응에 적용하였다. Cu(II)-lactic acid 착물의 경우 homogeneous 상태에서 분해반응 반감기가 37. 1 min으로 분해성능이 우수하였다. 1 kDa 저분자량 수용성 키토산으로 합성한 Cu(II)-LMWS chitosan 착물은 결정화 후에는 용해도가 낮아 heterogeneous 한 상태에서 분해반응이 진행되었으며 그 반감기는 32.9 h이었다. 이 결과는 기존에 연구 된 18 kDa 키토산 Cu(II)착물의 분해반응속도보다 약 16배 정도 증가된 것이다. Cu(II)-LMWS chitosan 착물을 결정화하지 않고 homogeneous한 상태로 진행한 분해반응에서는 반감기가 8.75 h로 용해도에 따라 약 4배의 차이를 확인할 수 있었다.
Chelates synthesized with Cu(II) ion and lactic acid or chitosan were applied to the hydrolysis of organophosphate simulant, DFP (diisopropyl fluorophosphate). Under the homogeneous reaction condition, Cu(II)-lactic acid chelate hydrolyzed DFP with the half life time of 37.1 min. Cu(II)-LMWS chitosan chelate was synthesized with 1 kDa molecular weight of chitosan, which showed low solubility, and then crystallized. The half life time for hydrolyzing DFP using Cu(II)-LMWS chitosan was 32.9 h indicating that the reaction rate is enhanced as much as 16 times more than that of using 18 kDa chitosan-Cu(II) complex. Under the homogeneous reaction condition, the half life time of Cu(II)-LMWS chitosan was 8.75 h. Therefore, we found out that the solubility of Cu(II)-LMWS chitosan makes the difference in the reaction rate as much as 4 times.
  1. Yang YC, Baker JA, Ward JR, Chem. Rev., 92, 1729 (1992)
  2. Kim K, Tsay OG, Atwood DA, Churchill DG, Chem. Rev., 111(9), 5345 (2011)
  3. Moss RA, Alwis KW, Bizzigotti GO, J. Am. Chem. Soc., 105, 681 (1983)
  4. Morales-Rojas H, Moss RA, Chem. Rev., 102(7), 2497 (2002)
  5. Gustafson RL, Chaberek S, Martell AE, J. Am. Chem. Soc., 85, 598 (1963)
  6. Kye YS, Jeong K, Chung WY, Appl. Chem. Eng., 21(1), 1 (2010)
  7. Sharma N, Kakkar R, Adv. Mater Lett., 4, 508 (2013)
  8. Moon SY, Proussaloglou E, Peterson GW, DeCoste JB, Hall MG, Howarth AJ, Hupp JT, Farha OK, Chem. Eur. J., 22, 14864 (2016)
  9. Liu Y, Howarth AJ, Vermeulen NA, Moon SY, Hupp JT, Farha OK, Coord. Chem. Rev., 346, 101 (2017)
  10. de Koning MC, van Grol M, Breijaert T, Inorg. Chem., 56(19), 11804 (2017)
  11. Islamoglu T, Atilgan A, Moon SY, Peterson GW, DeCoste JB, Hall M, Hupp JT, Farha OK, Chem. Mater., 29, 2672 (2017)
  12. Kumar MNVR, Muzzarelli RAA, Muzzarelli C, Sashiwa H, Domb AJ, Chem. Rev., 104(12), 6017 (2004)
  13. Schmuhl R, Krieg HM, Keizer K, Water SA, 27, 1 (2001)
  14. Sulakova R, Hrdina R, Soares GMB, Dyes Pigment., 73, 19 (2007)
  15. McGowan P, Rayner C, Blackburn R, Angew. Chem.-Int. Edit., 50, 291 (2011)
  16. Bartelt-Hunt SL, Knappe DRU, Barlaz MA, Crit. Rev. Environ. Sci. Technol., 38, 112 (2008)
  17. Jeong KH, Shim JM, Chung WY, Kye YS, Kim DW, Appl. Organomet. Chem., 32, e4383 (2018)
  18. Kye YS, Chung WY, Kim DW, Park YK, Song SU, Jeong KH, J. KIMST, 15, 699 (2012)
  19. Hay RW, Govan N, Polyhedron, 17, 2079 (1998)
  20. Nah JW, Jang MK, J. Polym. Sci. A: Polym. Chem., 40(21), 3796 (2002)
  21. Monteiro OAC, Airoldi C, J. Colloid Interface Sci., 212(2), 212 (1999)
  22. Yu K, Ho J, McCandlish E, Buckley B, Patel R, Li Z, Shapley NC, Colloids Surf. A: Physicochem. Eng. Asp., 425, 31 (2013)
  23. Bajwa SZ, Lieberzeit PA, Sens. Actuators B-Chem., 207, 976 (2015)
  24. Cai Y, Zheng L, Fang Z, RSC Adv., 5, 97435 (2015)