화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.31, No.5, 487-494, October, 2020
폴리우레탄과 개질된 질화붕소로 이루어진 난연성 방열 복합체
Flame Retardant and Heat Radiating Composite Consisting of Polyurethane and Modified Boron Nitride
E-mail:
초록
기존의 방열필름의 연소문제를 해결하기 위해 poly(tetra methylene glycol) (PTMG), 4,4’-methylenebis(phenyl isocyanate) (MDI)와 유기인이 도입된 실란 커플링제로 표면개질한 질화붕소를 사용하여 폴리우레탄과 개질된 질화붕소로 이루어 진 복합체를 제작하였다. Fourier transform-infrared (FT-IR) 분광 분석을 통해 질화붕소의 개질과 복합체의 합성 여부를 확인하였다. 또 universal testing machine (UTM) 측정을 통해 개질된 질화붕소의 함량에 따른 복합체의 기계적 물성변화를 확인하였으며, layser flash analysis (LFA)와 UL94 측정을 통해 열적 특성을 조사하였다. 그 결과, 복합체의 열전도도가 1.19 W/m.K로 증가하였으며, 자기소화성이 없어 타기 쉬운 폴리우레탄의 난연성이 UL94 V-1 등급으로 향상되었다.
Polyurethane/modified boron nitride (PU/m-BN) composite was synthesized from the poly(tetra methylene glycol) (PTMG), 4,4’-methylenebis(phenyl isocyanate) (MDI), and modified boron nitride (m-BN). The modification of boron nitride and synthesis of PU/m-BN composite were confirmed by Fourier transform infrared (FT-IR) spectroscopic analyses. The mechanical properties of the PU/m-BN composites were measured using the universal testing machine (UTM) and the thermal properties of the composites were investigated ser flash analysis (LFA) and UL94 measurements. As a result, the thermal conductivity of the polyurethane composite increased to 1.19 W/m.K, and the flame retardancy of the easy to burn polyurethane, which was not self-extinguishing was improved to UL94 V-1 grade.
  1. Lee HL, Ha SM, Yoo Y, Lee SG, Polym. Sci. Technol., 24(1), 30 (2013)
  2. Lee GW, Park M, Kim J, Lee JI, Yoon HG, Compos. Part A Appl. Sci. Manuf., 37, 727 (2006)
  3. Sanada K, Tada Y, Shindo Y, Compos. Part A Appl. Sci. Manuf., 40, 724 (2009)
  4. Mahanta NK, Loos MR, Zlocozower IM, Abramson AR, Mater. Res. Soc, 30, 959 (2015)
  5. Park JS, An YJ, Shin K, Han JH, Lee CS, RSC Adv., 5, 46989 (2015)
  6. Kim Y, Jung J, Yeo H, You N, Jang SG, Ahn S, Lee SH, Goh M, J. Korean Soc. Compos. Mater., 30, 1 (2017)
  7. Hwangbo S, Cho SH, J. Text. Eng., 55, 35 (2018)
  8. Zhao JC, Du FP, Zhou XP, Cui W, Wang XM, Zhu H, Xie XL, Mai YW, Compos. Part B Eng., 42, 2111 (2011)
  9. Cakmakci E, Kocyigit C, Cakir S, Durmus A, Kahraman MV, Polym. Compos., 35, 530 (2014)
  10. Li M, Cui H, Li Q, Zhang Q, J. Reinf. Plast. Compos., 35, 435 (2016)
  11. Kim K, Kim M, Kim J, Ceram. Int., 40, 10933 (2014)
  12. Lee J, Jung J, Na W, Oh J, Kim Y, Kim W, Jang J, J. Mater. Chem. C, 5, 12507 (2017)
  13. Vasiljevic J, Jerman I, Jaksa G, Alongi J, Malucelli G, Zorko M, Tomsic B, Cellulose, 22, 1893 (2015)
  14. Mishra AK, Chattopadhyay DK, Sreedhar B, Raju KVSN, Prog. Org. Coat., 55, 231 (2006)
  15. Oh T, Lee K, Kim K, Choi C, J. Korean Phys. Soc., 45, 705 (2004)
  16. Pechar TW, Wilkes GL, Zhou B, Luo N, J. Appl. Polym. Sci., 106(4), 2350 (2007)
  17. Lu YS, Larock RC, Biomacromolecules, 9(11), 3332 (2008)
  18. Cai D, Yusoh K, Song M, Nanotechnology, 20, 1 (2009)
  19. Kato H, Hirano T, Matsuo A, Kawamura Y, Inoue A, Scr. Mater., 43, 503 (2000)
  20. Eceiza A, Martin MD, de la Caba K, Kortaberria G, Gabilondo N, Corcuera MA, Mondragon I, Polym. Eng. Sci., 48(2), 297 (2008)
  21. Krol P, Kropl B, Pielichowska K, Spirkova M, Colloid Polym. Sci., 293, 421 (2015)
  22. Cervantes-Uc JM, Moo Espinosa JI, Cauich-Rodriguez JV, Avila-Ortega A, Vazquez-Torres H, Marcos-Fernandez A, San Roman J, Polym. Degrad. Stabil., 94, 1666 (2009)
  23. Petrovic ZS, Zavargo Z, Flynn JH, Macknight WJ, J. Appl. Polym. Sci., 51(6), 1087 (1994)
  24. Liu SH, Kuan CF, Kuan HC, Shen MY, Yang JM, Chiang CL, Polymers, 9, 407 (2017)