Applied Chemistry for Engineering, Vol.31, No.5, 487-494, October, 2020
폴리우레탄과 개질된 질화붕소로 이루어진 난연성 방열 복합체
Flame Retardant and Heat Radiating Composite Consisting of Polyurethane and Modified Boron Nitride
E-mail:
초록
기존의 방열필름의 연소문제를 해결하기 위해 poly(tetra methylene glycol) (PTMG), 4,4’-methylenebis(phenyl isocyanate) (MDI)와 유기인이 도입된 실란 커플링제로 표면개질한 질화붕소를 사용하여 폴리우레탄과 개질된 질화붕소로 이루어 진 복합체를 제작하였다. Fourier transform-infrared (FT-IR) 분광 분석을 통해 질화붕소의 개질과 복합체의 합성 여부를 확인하였다. 또 universal testing machine (UTM) 측정을 통해 개질된 질화붕소의 함량에 따른 복합체의 기계적 물성변화를 확인하였으며, layser flash analysis (LFA)와 UL94 측정을 통해 열적 특성을 조사하였다. 그 결과, 복합체의 열전도도가 1.19 W/m.K로 증가하였으며, 자기소화성이 없어 타기 쉬운 폴리우레탄의 난연성이 UL94 V-1 등급으로 향상되었다.
Polyurethane/modified boron nitride (PU/m-BN) composite was synthesized from the poly(tetra methylene glycol) (PTMG), 4,4’-methylenebis(phenyl isocyanate) (MDI), and modified boron nitride (m-BN). The modification of boron nitride and synthesis of PU/m-BN composite were confirmed by Fourier transform infrared (FT-IR) spectroscopic analyses. The mechanical properties of the PU/m-BN composites were measured using the universal testing machine (UTM) and the thermal properties of the composites were investigated ser flash analysis (LFA) and UL94 measurements. As a result, the thermal conductivity of the polyurethane composite increased to 1.19 W/m.K, and the flame retardancy of the easy to burn polyurethane, which was not self-extinguishing was improved to UL94 V-1 grade.
Keywords:Heat radiating material;Thermal conductivity;Flame retardancy;Polyurethane composite;Modified boron nitride
- Lee HL, Ha SM, Yoo Y, Lee SG, Polym. Sci. Technol., 24(1), 30 (2013)
- Lee GW, Park M, Kim J, Lee JI, Yoon HG, Compos. Part A Appl. Sci. Manuf., 37, 727 (2006)
- Sanada K, Tada Y, Shindo Y, Compos. Part A Appl. Sci. Manuf., 40, 724 (2009)
- Mahanta NK, Loos MR, Zlocozower IM, Abramson AR, Mater. Res. Soc, 30, 959 (2015)
- Park JS, An YJ, Shin K, Han JH, Lee CS, RSC Adv., 5, 46989 (2015)
- Kim Y, Jung J, Yeo H, You N, Jang SG, Ahn S, Lee SH, Goh M, J. Korean Soc. Compos. Mater., 30, 1 (2017)
- Hwangbo S, Cho SH, J. Text. Eng., 55, 35 (2018)
- Zhao JC, Du FP, Zhou XP, Cui W, Wang XM, Zhu H, Xie XL, Mai YW, Compos. Part B Eng., 42, 2111 (2011)
- Cakmakci E, Kocyigit C, Cakir S, Durmus A, Kahraman MV, Polym. Compos., 35, 530 (2014)
- Li M, Cui H, Li Q, Zhang Q, J. Reinf. Plast. Compos., 35, 435 (2016)
- Kim K, Kim M, Kim J, Ceram. Int., 40, 10933 (2014)
- Lee J, Jung J, Na W, Oh J, Kim Y, Kim W, Jang J, J. Mater. Chem. C, 5, 12507 (2017)
- Vasiljevic J, Jerman I, Jaksa G, Alongi J, Malucelli G, Zorko M, Tomsic B, Cellulose, 22, 1893 (2015)
- Mishra AK, Chattopadhyay DK, Sreedhar B, Raju KVSN, Prog. Org. Coat., 55, 231 (2006)
- Oh T, Lee K, Kim K, Choi C, J. Korean Phys. Soc., 45, 705 (2004)
- Pechar TW, Wilkes GL, Zhou B, Luo N, J. Appl. Polym. Sci., 106(4), 2350 (2007)
- Lu YS, Larock RC, Biomacromolecules, 9(11), 3332 (2008)
- Cai D, Yusoh K, Song M, Nanotechnology, 20, 1 (2009)
- Kato H, Hirano T, Matsuo A, Kawamura Y, Inoue A, Scr. Mater., 43, 503 (2000)
- Eceiza A, Martin MD, de la Caba K, Kortaberria G, Gabilondo N, Corcuera MA, Mondragon I, Polym. Eng. Sci., 48(2), 297 (2008)
- Krol P, Kropl B, Pielichowska K, Spirkova M, Colloid Polym. Sci., 293, 421 (2015)
- Cervantes-Uc JM, Moo Espinosa JI, Cauich-Rodriguez JV, Avila-Ortega A, Vazquez-Torres H, Marcos-Fernandez A, San Roman J, Polym. Degrad. Stabil., 94, 1666 (2009)
- Petrovic ZS, Zavargo Z, Flynn JH, Macknight WJ, J. Appl. Polym. Sci., 51(6), 1087 (1994)
- Liu SH, Kuan CF, Kuan HC, Shen MY, Yang JM, Chiang CL, Polymers, 9, 407 (2017)