Applied Chemistry for Engineering, Vol.31, No.5, 526-531, October, 2020
소나무 수피 바이오차를 이용한 수중에서 망간의 제거능력 향상
Enhancement of Manganese Removal Ability from Water Phase Using Biochar of Prinus densiflora Bark
E-mail:,
초록
수중에 함유된 망간 이온은 인체에 독성 물질로 작용하며, 또한 신경계에 영향을 미치는 것으로 알려져 있다. 특히 망간은 넓은 pH 영역에서 높은 용해성으로 인하여, 망간 제거가 어렵기 때문에 이를 효과적으로 처리하는 연구가 필요하다. 본 연구에서 소나무 수피 바이오차를 과산화수소로 화학적으로 개질하였고, 개질된 흡착제는 수중에서의 망간 이온 제거에 사용되었다. 개질된 흡착제는 망간이온 5, 10 mg/L 조건에서 각각 82.1, 56.2%의 높은 제거능력을 나타내었다. 또한 망간 농도 변화에 의한 흡착 데이터로부터 이론식에 적용하여 분석하였다. 그 결과 망간 이온의 흡착 거동은 Freundlich 보다는 Langmuir 모델에 잘 부합하였으며 또한, 동력학적 고찰에 의하면 유사 2차 반응식 (pseudo-second order kinetic model)이 더욱 적합함을 알 수 있었다. 그리고 Gibbs 자유에너지 변화에서는 흡착 반응의 온도가 증가할수록 자발성이 보다 더 잘 이루어진다는 것을 도출하였다. 결과적으로 이러한 실험 결과들은 수중에 함유된 망간 이온을 효과적으로 제거하는 수처리 기술로 사용될 수 있을 것이다.
Manganese ions contained in water phase are acting as a toxic substance in the human body and also known to affect the nervous system. In particular, effective treatment technology is required since manganese removal is difficult due to its high solubility in a wide pH range. In this study, Prinus densiflora bark was chemically modified with hydrogen peroxide, and the modified adsorbent was used for removing manganese ions in an aqueous solution. The modified adsorbent showed high removal capacity of 82.1 and 56.2%, respectively, at conditions of 5 and 10 mg/L manganese ions. Also, the adsorption isotherm from the data was applied to the theoretical equation. As a result, the adsorption behavior of manganese ions was better suited to the Langmuir than Freundlich model, and it was also found from kinematics that the pseudo-second order kinetic model was more suitable. In addition, the changes of Gibbs free energy indicated that the adsorption reaction became more spontaneously with increasing temperature. Consequently, these experimental results may be used as a water treatment technology which can efficiently treat manganese ions contained in water.
- Ok YS, Yang JE, Zhang YS, Kim SJ, Chung DY, J. Hazard. Mater., 147(1-2), 91 (2007)
- Yeon JM, Jeon TW, Kang YY, Jeong MJ, Shim SK, Kim YJ, Jang MJ, J. Korea Soc. Waste Manag., 33, 338 (2016)
- Liang J, Lim BR, Lee SK, J. Korea Soc. Waste Manag., 33, 85 (2016)
- Kim SU, Kim YG, Lee SM, Park HC, Kim KK, Son HJ, Yun SW, Kim SY, Hong CO, Korean J. Environ Agric., 35, 152 (2016)
- Shin RY, Ryu HS, Lee JH, J. Korean Soc. Water Environ., 33, 424 (2017)
- Lee HY, Hong KC, Lim JE, Joo JH, Yang JE, Ok YS, Korean J. Environ. Agric., 28, 69 (2009)
- Aschner M, Guilarte TR, Schneider JS, Zheng W, Toxicol. Appl. Pharmacol., 221, 131 (2007)
- Bamforth SM, Manning DAC, Singleton I, Younger PL, Johnson KL, Appl. Geochem., 21, 1274 (2006)
- Doula MK, Water Res., 40, 3167 (2006)
- Khoramzadeh E, Nasernejad B, Halladj R, J. Taiwan Inst. Chem., Eng., 44, 266 (2013)
- Ahmad M, Lee SS, Dou XM, Mohan D, Sung JK, Yang JE, Ok YS, Bioresour. Technol., 118, 536 (2012)
- Bae WB, Park GR, Jung DY, Ahn JH, J. Korea Soc. Waste Manag., 35, 236 (2018)
- Park JH, Kim HC, Kim YJ, Kim SH, Seo DC, Korean J. Environ. Agric., 36, 22 (2017)
- Ghodbane I, Nouri L, Hamdaoui O, Chiha M, J. Hazard. Mater., 152(1), 148 (2008)
- Ozacar M, Chemosphere, 51, 321 (2003)
- Hasan HA, Abdullah SRS, Kofli NT, Kamarudin SK, J. Environ. Manag., 111, 34 (2012)
- Ho YS, McKay G, Can. J. Chem. Eng., 76(4), 822 (1998)
- An S, Choi J, Park J, Korea Geo-Environ. Soc., 11, 45 (2010)
- Allen SJ, McKay G, Khader KYH, Environ. Pollut., 56, 39 (1989)
- Weber WJ, Morris JC, J. Sanit. Eng. Div., 89, 31 (1963)
- Lee JJ, Appl. Chem. Eng., 25(1), 96 (2014)
- Lee JJ, Appl. Chem. Eng., 25(6), 632 (2014)
- Nollet H, Roels M, Lutgen P, Meeren PV, Verstraete W, Chemosphere, 53, 655 (2003)
- Lee JJ, Appl. Chem. Eng., 30(2), 190 (2019)
- Lee JJ, Clean Technol., 26(2), 122 (2020)
- Na CK, Han M, Park HJ, J. Korean Soc. Environ. Eng., 33, 606 (2011)