화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.31, No.5, 539-544, October, 2020
고성능 전기 화학 pH 센서를 위한 유연한 3차원 다공성 폴리아닐린 필름 제조
Preparation of Flexible 3D Porous Polyaniline Film for High-Performance Electrochemical pH Sensor
E-mail:,
초록
본 연구에서는 넓은 면적의 나노필라 배열 필름을 기반으로 포토 및 소프트 리소그래피 기술과 화학적 희석 고분자 중합을 조절하여 3차원 다공성의 폴리아닐린 필름을 제조하였다. 3차원 폴리아닐린 필름은 계층 간 연결된 폴리아닐린 나노파이버들로 구성되어 있어, 넓은 표면적과 개방형의 다공성 구조를 가지는 3차원 계층형 나노웹 필름을 형성한다. 전기화학분석법을 기반으로 3차원 폴리아닐린 필름이 유연한 pH 센서 전극이 되는 것을 증명하였다. 3차원 폴리아닐린 필름은 이상적인 네른스트 거동과 근접한 60.3 mV/pH의 높은 민감도를 보였다. 또한, 3차원 폴리아닐린 전극은 10 min의 빠른 반응 속도, 우수한 반복성 그리고 높은 선택성을 나타내었다. 3차원 폴리아닐린 전극을 기계적으로 굽힌 상태에서 센서 특성을 측정하였을 때, 전극이 60.4 mV/pH의 높은 민감도를 보여줌으로써, 유연한 pH 센서성능을 증명하였다.
A three-dimensional (3D) porous polyaniline (PANI) film was fabricated by a combined photo-and soft-lithography technique based on a large-area nanopillar array, followed by a controlled chemical dilute polymerization. The as-obtained 3D PANI film consisted of hierarchically interconnected PANI nanofibers, resulting in a 3D hierarchical nanoweb film with a large surface and open porous structure. Using electrochemical measurements, the resulting 3D PANI film was demonstrated as a flexible pH sensor electrode, exhibiting a high sensitivity of 60.3 mV/pH, which is close to the ideal Nernstian behavior. In addition, the 3D PANI electrode showed a fast response time of 10 s, good repeatability, and good selectivity. When the 3D PANI electrode was measured under a mechanically bent state, the electrode exhibited a high sensitivity of 60.4 mV/pH, demonstrating flexible pH sensor performance.
  1. Yoon JH, Hong SB, Yun SO, Lee SJ, Lee TJ, Lee KG, Choi BG, J. Colloid Interface Sci., 490, 53 (2017)
  2. Yoon JH, Kim KH, Bae NH, Sim GS, Oh YJ, Lee SJ, Lee TJ, Lee KG, Choi BG, J. Colloid Interface Sci., 508, 167 (2017)
  3. Islam S, Bakhtiar H, Naseem S, Aziz MSBA, Bidin N, Riaz S, Ali J, Sens. Actuators A-Phys., 276, 267 (2018)
  4. Hammarling K, Engholm M, Andersson H, Sandberg M, Nilsson H, Chemosensors, 6, 30 (2018)
  5. Chinnathambi S, Euverink GJW, Sens. Actuators B-Chem., 264, 38 (2018)
  6. Hou S, Dong J, Tang M, Jiang X, Jiao Z, Zhao B, Anal. Chem., 91, 5455 (2019)
  7. Zhao Y, Lei M, Liu S, Zhao Q, Sens. Actuators B-Chem., 261, 226 (2018)
  8. Pospisilova M, Kuncova G, Trogl J, Sensors, 15, 25208 (2015)
  9. Park HJ, Yoo JH, Lee KG, Choi BG, Nano Converg., 6, 9 (2019)
  10. Park HJ, Jeong JM, Yoon JH, Son SG, Kim YK, Kim D, Lee KG, Choi BG, J. Colloid Interface Sci., 560, 817 (2020)
  11. Son SG, Park HJ, Kim YK, Cho H, Choi BG, ACS Appl. Chem. Eng., 30, 737 (2019)
  12. Yoon JH, Kim S, Eom Y, Koo JM, Cho H, Lee TJ, et al., ACS Appl. Mater. Interfaces, 11, 46165 (2019)
  13. Yoon JH, Park HJ, Park SH, Lee KG, Choi BG, Carbon Lett., 30, 73 (2020)
  14. Ul Alam A, Qin YH, Nambiar S, Yeow JTW, Howlader MMR, Hu NX, Deen MJ, Prog. Mater. Sci., 96, 174 (2018)
  15. Nikolajek WP, Emrich HM, Klin. Wschr., 54, 287 (1976)
  16. Abelson MB, Sadun AA, Udell IJ, Weston JH, Am. J. Ophthalmol., 90, 866 (1980)
  17. Chaisiwamongkhol K, Batchelor-Mcauley C, Compton RG, Analyst, 142, 2828 (2017)
  18. Baliga S, Muglikar B, Kale R, J. Indian Soc. Periodonto., 17, 461 (2013)
  19. Kwong T, Robinson C, Spencer D, Wiseman OJ, Frankl FEK, Urolithiasis, 41, 129 (2013)
  20. Yoon JH, Kim S, Park HJ, Kim YK, Oh DX, Cho H, Lee KG, Hwang SY, Biosens. Bioelectron., 150, 111946 (2020)
  21. Ding J, Qin W, Trends Anlyt. Chem., 124, 115803 (2020)
  22. Bandodkar AJ, Wang J, Trends Biotechnol., 32, 363 (2014)
  23. Manjakkal L, Dervin S, Dahiya R, RSC Adv., 10, 8594 (2020)
  24. Parrilla M, Ortiz-Gomez I, Canovas R, Salinas-Castillo A, Cuartero M, Crespo GA, Anal. Chem., 91, 8644 (2019)
  25. Qin Y, Kwon H, Howlader MMR, Deen MJ, RSC Adv., 5, 69086 (2015)
  26. Huang W, Cao H, Deb S, Chiao M, Chiao JC, Sens. Actuators A-Phys., 169, 1 (2011)
  27. Liao Y, Chou J, Sens. Actuators B-Chem., 128, 603 (2008)
  28. Telli L, Brahimi B, Hammouche A, Solid State Ion., 128, 225 (2000)
  29. Liao YH, Chou JC, Mater. Chem. Phys., 114(2-3), 542 (2009)
  30. Tsai C, Chou J, Sun T, Hsiung S, IEEE Sens. J., 6, 1243 (2006)
  31. Lakard B, Herlem G, Lakard S, Guyetant R, Fahys B, Polymer, 46(26), 12233 (2005)
  32. Shiu KK, Song FY, Lau KW, J. Electroanal. Chem., 476(2), 109 (1999)
  33. Marsh P, Manjakkal L, Yang X, Huerta M, Le T, Thiel L, Chiao JC, Cao H, Dahiya R, IEEE Sens. J., 20, 5130 (2020)
  34. Shahrestani S, Ismail MC, Kakooei S, Beheshti M, Zabihiazadboni M, Zavareh MA, IOP Conf. Ser. Mater. Sci. Eng., 328, 012014 (2018)
  35. Tabata M, Ratanaporncharoen C, Asano A, Kitasako Y, Ikeda M, Goda T, Matsumoto A, Tagami J, Miyahara Y, Procedia Eng., 168, 598 (2016)
  36. Ghoneim MT, Nguyen A, Dereje N, Huang J, Moore GC, Murzynowski PJ, Dagdeviren C, Chem. Rev., 119(8), 5248 (2019)
  37. Lindfors T, Ivaska A, J. Electroanal. Chem., 531(1), 43 (2002)
  38. Park SH, Jeong J, Kim SJ, Kim KH, Lee SH, Bae NH, Lee KG, Choi BG, ACS Appl. Energy Mater., DOI: 10.1021/acsaem.0c01140 (2020).
  39. Buck RP, Lindner E, Pure Appl. Chem., 66, 2527 (1994)
  40. Pingarron JM, Labuda J, Barek J, Brett CMA, Camoes MF, Fojta M, Hibbert DB, Pure Appl. Chem., 92, 641 (2020)
  41. Noby H, El-Shazly AH, Elkady MF, Ohshima M, Polymer, 156, 71 (2018)