Applied Chemistry for Engineering, Vol.31, No.5, 552-559, October, 2020
Activated Carbon-Nickel (II) Oxide Electrodes for Capacitive Deionization Process
E-mail:
Activated carbon-nickel (II) oxide (AC-NiO) electrodes were studied as materials for the capacitive deionization (CDI) of aqueous sodium chloride solution. AC-NiO electrodes were fabricated through physical mixing and low-temperature heating of precursor materials. The amount of NiO in the electrodes was varied and its effect on the deionization performance was investigated using a single-pass mode CDI setup. The pure activated carbon electrode showed the highest specific surface area among the electrodes. However, the AC-NiO electrode with approximately 10 and 20% of NiO displayed better deionization performance. The addition of a dielectric material like NiO to the carbon material resulted in the enhancement of the electric field, which eventually led to an improved deionization performance. Among all as-prepared electrodes, the AC-NiO electrode with approximately 10% of NiO gave the highest salt adsorption capacity and charge efficiency, which are equal to 7.46 mg/g and 90.1%, respectively. This finding can be attributed to the optimum enhancement of the physical and chemical characteristics of the electrode brought by the addition of the appropriate amount of NiO.
Keywords:Capacitive deionization;Nickel (II) oxide;Activated carbon;Salt adsorption capacity;Charge efficiency
- WWAP, The Untapped Resource. http://unesdoc.unesco.org/images/0024/002471/247153e.pdf (accessed 8 January 2018) (2017).
- United Nations, The 2017 Revision, Key Findings and Advance Tables. Working Paper No. ESA/P/WP/248. http://esa.un.org/unpd/wpp/publications/Files/WPP2017_KeyFindings.pdf (accessed 8 January 2018) (2017).
- El-Dessouky H, Ettouney H, Heat Transf. Eng., 23(5), 1 (2002)
- Humplik T, Lee J, O'Hern SC, Fellman BA, Baig MA, et al., Nanotechnology, 22, 292001 (2011)
- Miller JE, Review of water resources and desalination technologies. http://prod.sandia.gov/techlib/access-control.cgi/2003/030800.pdf (accessed 8 January 2018) (2003).
- Anderson MA, Cudero AL, Palma J, Electrochim. Acta, 55(12), 3845 (2010)
- Porada S, Zhao R, van der Wal A, Presser V, Biesheuvel PM, Prog. Mater. Sci., 58(8), 1388 (2013)
- Suss ME, Porada S, Sun X, Biesheuvel PM, Yoon J, Presser V, Energy Environ. Sci., 8, 2296 (2015)
- Oren Y, Desalination, 228(1-3), 10 (2008)
- Huang ZH, Yang Z, Kang F, Inagaki M, J. Mater. Chem. A, 5, 470 (2017)
- Johnson AM, The Electrosorb Process for Desalting Water. Research and Development Progress Report No. 516. http://ntrl.ntis.gov/NTRL/dashboard/searchResults/titleDetail/PB200056.xhtml (accessed 8 January 2018) (1970).
- Wang G, Qian BQ, Dong Q, Yang JY, Zhao ZB, Qiu JS, Sep. Purif. Technol., 103, 216 (2013)
- Li LH, Pan L, Nie C, Liu Y, Sun Z, J. Mater. Chem., 22, 15556 (2012)
- Oda H, Nakagawa Y, Carbon, 41, 1037 (2003)
- Villar I, Roldan S, Ruiz V, Granda M, Blanco C, Menendez R, Santamaria R, Energy Fuels, 24, 3329 (2010)
- Zou L, Morris G, Qi D, Desalination, 225(1-3), 329 (2008)
- Niu R, Li HB, Ma YL, He LJ, Li J, Electrochim. Acta, 176, 755 (2015)
- Laxman K, Myint MTZ, Khan R, Pervez T, Dutta J, Desalination, 359, 64 (2015)
- Laxman K, Myint MTZ, Bourdoucen H, Dutta J, ACS Appl. Mater. Interfaces, 6, 10113 (2014)
- Laxman K, Myint MTZ, Khan R, Pervez T, Dutta J, Electrochim. Acta, 166, 329 (2015)
- Liu PI, Chung LC, Shao H, Liang TM, Horng RY, Ma CCM, Chang MC, Electrochim. Acta, 96, 173 (2013)
- Ryoo MW, Kim JH, Seo G, J. Colloid Interface Sci., 264(2), 414 (2003)
- Srimuk P, Zeiger M, Jackel N, Tolosa A, Kruner B, Fleischmann S, Grobelsek I, Aslan M, Shvartsev B, Suss ME, Presser V, Electrochim. Acta, 224, 314 (2017)
- Liu Y, Nie C, Liu X, Xu X, Xun Z, Pan L, RSC Adv., 5, 15205 (2015)
- Li B, Zheng M, Xue H, Pang H, Inorg. Chem. Front., 3, 175 (2016)
- Lokhande VC, Lokhande AC, Lokhande CD, Kim JH, Ji T, J. Alloy. Compd., 682, 381 (2016)
- Shi F, Li Wang XL, Gua CD, Tu JP, RSC Adv., 4, 41910 (2014)
- Wang G, Zhang L, Zhang J, Chem. Soc. Rev., 41, 797 (2012)
- Wang Y, Guo J, Wang T, Shao J, Wang D, Yang YW, Nanomaterials, 5, 1667 (2015)
- Wouters JJ, Lado JJ, Tejedor-Tejedor MI, Perez-Roa R, Anderson MA, Electrochim. Acta, 112, 763 (2013)
- Liu YH, His HC, Li KC, KC, Hou CH, ACS Sustain. Chem. Eng., 4, 4762 (2016)
- Biesheuvel PM, Zhao R, Porada S, van der Wal A, J. Colloid Interface Sci., 360(1), 239 (2011)
- Zhao R, Biesheuvel PM, Miedema H, Bruning H, van der Wal A, J. Phys. Chem. Lett., 1, 205 (2010)
- Marsh H, Rodriguez-Reinoso F, Activated Carbon, 1st ed., 153-156, Elsevier Science Ltd (2006).
- Lee JB, Park KK, Yoon SW, Park PY, Park KI, Lee CW, Desalination, 237(1-3), 155 (2009)
- Chen B, Wang Y, Chang Z, Wang X, Li M, Liu X, Zhang L, Wu Y, RSC Adv., 6, 6730 (2016)
- El-Deen AG, Choi JH, Khalil KA, Almajid AA, Barakat NAM, RSC Adv., 4, 64634 (2014)
- El-Deen AG, Barakat NAM, Kim HY, Desalination, 344, 289 (2014)
- El-Deen AG, Barakat NAM, Khalil KA, Motlak M, Kim HY, Ceram. Int., 40, 14627 (2014)
- El-Deen AG, Choi JH, Kim CS, Khalil KA, Almajid AA, Barakat NAM, Desalination, 361, 53 (2015)
- Li HB, Ma YL, Niu R, Sep. Purif. Technol., 171, 93 (2016)
- Trinh NT, Chung S, Lee JK, LeeJ, J. Energy Chem., 25, 354 (2016)
- Yasin AS, Mohamed HO, Mohamed IMA, Mousa HM, Barakat NAM, Sep. Purif. Technol., 171, 34 (2016)
- Yasin AS, Mohamed HO, Mohamed IMA, Mousa HM, Barakat NAM, RSC Adv., 7, 4616 (2017)
- Hatzell KB, Fan L, Beidaghi M, Boota M, Pomerantseva E, Kumbur EC, Gogotsi Y, ACS Appl. Mater. Interfaces, 6, 8886 (2014)
- Yeh CL, Hsi HC, Li KC, Hou CH, Desalination, 367, 60 (2015)
- Myint MTZ, Dutta J, Desalination, 305, 24 (2012)
- Huang ZH, Wang M, Wang L, Kang FY, Langmuir, 28(11), 5079 (2012)