화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.31, No.5, 552-559, October, 2020
Activated Carbon-Nickel (II) Oxide Electrodes for Capacitive Deionization Process
E-mail:
Activated carbon-nickel (II) oxide (AC-NiO) electrodes were studied as materials for the capacitive deionization (CDI) of aqueous sodium chloride solution. AC-NiO electrodes were fabricated through physical mixing and low-temperature heating of precursor materials. The amount of NiO in the electrodes was varied and its effect on the deionization performance was investigated using a single-pass mode CDI setup. The pure activated carbon electrode showed the highest specific surface area among the electrodes. However, the AC-NiO electrode with approximately 10 and 20% of NiO displayed better deionization performance. The addition of a dielectric material like NiO to the carbon material resulted in the enhancement of the electric field, which eventually led to an improved deionization performance. Among all as-prepared electrodes, the AC-NiO electrode with approximately 10% of NiO gave the highest salt adsorption capacity and charge efficiency, which are equal to 7.46 mg/g and 90.1%, respectively. This finding can be attributed to the optimum enhancement of the physical and chemical characteristics of the electrode brought by the addition of the appropriate amount of NiO.
  1. WWAP, The Untapped Resource. http://unesdoc.unesco.org/images/0024/002471/247153e.pdf (accessed 8 January 2018) (2017).
  2. United Nations, The 2017 Revision, Key Findings and Advance Tables. Working Paper No. ESA/P/WP/248. http://esa.un.org/unpd/wpp/publications/Files/WPP2017_KeyFindings.pdf (accessed 8 January 2018) (2017).
  3. El-Dessouky H, Ettouney H, Heat Transf. Eng., 23(5), 1 (2002)
  4. Humplik T, Lee J, O'Hern SC, Fellman BA, Baig MA, et al., Nanotechnology, 22, 292001 (2011)
  5. Miller JE, Review of water resources and desalination technologies. http://prod.sandia.gov/techlib/access-control.cgi/2003/030800.pdf (accessed 8 January 2018) (2003).
  6. Anderson MA, Cudero AL, Palma J, Electrochim. Acta, 55(12), 3845 (2010)
  7. Porada S, Zhao R, van der Wal A, Presser V, Biesheuvel PM, Prog. Mater. Sci., 58(8), 1388 (2013)
  8. Suss ME, Porada S, Sun X, Biesheuvel PM, Yoon J, Presser V, Energy Environ. Sci., 8, 2296 (2015)
  9. Oren Y, Desalination, 228(1-3), 10 (2008)
  10. Huang ZH, Yang Z, Kang F, Inagaki M, J. Mater. Chem. A, 5, 470 (2017)
  11. Johnson AM, The Electrosorb Process for Desalting Water. Research and Development Progress Report No. 516. http://ntrl.ntis.gov/NTRL/dashboard/searchResults/titleDetail/PB200056.xhtml (accessed 8 January 2018) (1970).
  12. Wang G, Qian BQ, Dong Q, Yang JY, Zhao ZB, Qiu JS, Sep. Purif. Technol., 103, 216 (2013)
  13. Li LH, Pan L, Nie C, Liu Y, Sun Z, J. Mater. Chem., 22, 15556 (2012)
  14. Oda H, Nakagawa Y, Carbon, 41, 1037 (2003)
  15. Villar I, Roldan S, Ruiz V, Granda M, Blanco C, Menendez R, Santamaria R, Energy Fuels, 24, 3329 (2010)
  16. Zou L, Morris G, Qi D, Desalination, 225(1-3), 329 (2008)
  17. Niu R, Li HB, Ma YL, He LJ, Li J, Electrochim. Acta, 176, 755 (2015)
  18. Laxman K, Myint MTZ, Khan R, Pervez T, Dutta J, Desalination, 359, 64 (2015)
  19. Laxman K, Myint MTZ, Bourdoucen H, Dutta J, ACS Appl. Mater. Interfaces, 6, 10113 (2014)
  20. Laxman K, Myint MTZ, Khan R, Pervez T, Dutta J, Electrochim. Acta, 166, 329 (2015)
  21. Liu PI, Chung LC, Shao H, Liang TM, Horng RY, Ma CCM, Chang MC, Electrochim. Acta, 96, 173 (2013)
  22. Ryoo MW, Kim JH, Seo G, J. Colloid Interface Sci., 264(2), 414 (2003)
  23. Srimuk P, Zeiger M, Jackel N, Tolosa A, Kruner B, Fleischmann S, Grobelsek I, Aslan M, Shvartsev B, Suss ME, Presser V, Electrochim. Acta, 224, 314 (2017)
  24. Liu Y, Nie C, Liu X, Xu X, Xun Z, Pan L, RSC Adv., 5, 15205 (2015)
  25. Li B, Zheng M, Xue H, Pang H, Inorg. Chem. Front., 3, 175 (2016)
  26. Lokhande VC, Lokhande AC, Lokhande CD, Kim JH, Ji T, J. Alloy. Compd., 682, 381 (2016)
  27. Shi F, Li Wang XL, Gua CD, Tu JP, RSC Adv., 4, 41910 (2014)
  28. Wang G, Zhang L, Zhang J, Chem. Soc. Rev., 41, 797 (2012)
  29. Wang Y, Guo J, Wang T, Shao J, Wang D, Yang YW, Nanomaterials, 5, 1667 (2015)
  30. Wouters JJ, Lado JJ, Tejedor-Tejedor MI, Perez-Roa R, Anderson MA, Electrochim. Acta, 112, 763 (2013)
  31. Liu YH, His HC, Li KC, KC, Hou CH, ACS Sustain. Chem. Eng., 4, 4762 (2016)
  32. Biesheuvel PM, Zhao R, Porada S, van der Wal A, J. Colloid Interface Sci., 360(1), 239 (2011)
  33. Zhao R, Biesheuvel PM, Miedema H, Bruning H, van der Wal A, J. Phys. Chem. Lett., 1, 205 (2010)
  34. Marsh H, Rodriguez-Reinoso F, Activated Carbon, 1st ed., 153-156, Elsevier Science Ltd (2006).
  35. Lee JB, Park KK, Yoon SW, Park PY, Park KI, Lee CW, Desalination, 237(1-3), 155 (2009)
  36. Chen B, Wang Y, Chang Z, Wang X, Li M, Liu X, Zhang L, Wu Y, RSC Adv., 6, 6730 (2016)
  37. El-Deen AG, Choi JH, Khalil KA, Almajid AA, Barakat NAM, RSC Adv., 4, 64634 (2014)
  38. El-Deen AG, Barakat NAM, Kim HY, Desalination, 344, 289 (2014)
  39. El-Deen AG, Barakat NAM, Khalil KA, Motlak M, Kim HY, Ceram. Int., 40, 14627 (2014)
  40. El-Deen AG, Choi JH, Kim CS, Khalil KA, Almajid AA, Barakat NAM, Desalination, 361, 53 (2015)
  41. Li HB, Ma YL, Niu R, Sep. Purif. Technol., 171, 93 (2016)
  42. Trinh NT, Chung S, Lee JK, LeeJ, J. Energy Chem., 25, 354 (2016)
  43. Yasin AS, Mohamed HO, Mohamed IMA, Mousa HM, Barakat NAM, Sep. Purif. Technol., 171, 34 (2016)
  44. Yasin AS, Mohamed HO, Mohamed IMA, Mousa HM, Barakat NAM, RSC Adv., 7, 4616 (2017)
  45. Hatzell KB, Fan L, Beidaghi M, Boota M, Pomerantseva E, Kumbur EC, Gogotsi Y, ACS Appl. Mater. Interfaces, 6, 8886 (2014)
  46. Yeh CL, Hsi HC, Li KC, Hou CH, Desalination, 367, 60 (2015)
  47. Myint MTZ, Dutta J, Desalination, 305, 24 (2012)
  48. Huang ZH, Wang M, Wang L, Kang FY, Langmuir, 28(11), 5079 (2012)