화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.31, No.5, 568-574, October, 2020
기체확산층 물성이 고분자전해질 연료전지 성능에 미치는 영향
Effect of Gas Diffusion Layer Property on PEMFC Performance
E-mail:
초록
기체확산층은 유로에서 전극으로 반응물을 전달하고, 반응으로 생성되는 물을 배출하는 통로이며 열 배출과 전극 지지대 등의 역할을 하는 고분자전해질 연료전지의 핵심 구성요소이다. 본 연구에서는 국내외 기체확산층 상용 제품인 39BC와 JNT30-A3에 대한 연료전지의 성능 평가를 수행하였다. 25 cm2 단위 전지를 이용하여 유량, 상대습도 조건에 대한 분극 곡선을 측정하였고, empirical equation을 이용하여 운전 조건에 대한 성능 인자를 도출하였다. 기체확산층의 PTFE 함량이 높을수록 저항이 증가하였고, 미세다공층의 크랙은 물의 이동 통로로서 농도 손실에 영향을 미쳤다. 또한 상대습도가 낮을수록 Ohmic 저항이 증가하였지만, 전류밀도가 증가할수록 이온전도도가 증가하여 Ohmic 저항이 감소하였다. Empirical equation을 이용한 fitting curve을 통하여 기체확산층의 운전 조건에 대한 성능 인자 경향을 해석 할 수 있었다.
Gas diffusion layer (GDL) is one of the main components of PEMFC as a pathway of reactants from a flow field to an electrode, water transport in reverse direction, heat management and structural support of MEA. In this study, the effect of GDL on fuel cell performance was investigated for commercial products such as 39BC and JNT30-A3. Polarization curve measurements were performed at different flow rates and relative humidity conditions using 25 cm2 unit cell. The parameters on operating conditions were calculated using an empirical equation. The electrical resistance increased as the GDL PTFE content increased. The crack of microporous layer had influence on the concentration loss as water pathway. In addition, the ohmic resistance increased as the relative humidity decreased, but decreased as the current density increased due to water formation. Curve fitting analysis using the empirical equation model was applied to identify the tendency of performance parameters on operating conditions for the gas diffusion layer.
  1. Wee J, Renew. Sust. Energ. Rev., 11, 1720 (2007)
  2. Erdinc O, Uzunoglu M, Renew. Sust. Energ. Rev., 14, 2874 (2010)
  3. Lee DY, Elgowainy A, Kotz A, Vijayagopal R, Marcinkoski J, J. Power Sources, 393, 217 (2018)
  4. Park S, Lee JW, Popov BN, Int. J. Hydrog. Energy, 37(7), 5850 (2012)
  5. Omrani R, Shabani B, Int. J. Hydrog. Energy, 42(47), 28515 (2017)
  6. Lee HK, Park JH, Kim DY, Lee TH, J. Power Sources, 131(1-2), 200 (2004)
  7. Roshandel R, Farhanieh B, Saievar-Iranizad E, Renew. Energy, 30(10), 1557 (2005)
  8. Park S, Lee JW, Popov BN, J. Power Sources, 177(2), 457 (2008)
  9. Mortazavi M, Tajiri K, J. Power Sources, 245, 236 (2014)
  10. Chen Y, Tian Wan Z, Wu F, Tan J, Pan M, Int. J. Electrochem. Sci., 13, 3827 (2018)
  11. Chen T, Liu SH, Zhang JW, Tang MN, Int. J. Heat Mass Transf., 128, 1168 (2019)
  12. Nam JH, Lee KJ, Hwang GS, Kim CJ, Kaviany M, Int. J. Heat Mass Transf., 52(11-12), 2779 (2009)
  13. Markotter H, Haußmann J, Alink R, Totzke C, Arlt T, Klages M, et al., Electrochem. Commun., 34, 22 (2013)
  14. Deevanhxay P, Sasabe T, Tsushima S, Hirai S, Electrochem. Commun., 34, 239 (2013)
  15. Ferreira RB, Falcao DS, Oliveira VB, Pinto AMFR, Electrochim. Acta, 224, 337 (2017)
  16. Ge JB, Higier A, Liu HT, J. Power Sources, 159(2), 922 (2006)
  17. Wu Y, Cho JIS, Lu X, Rasha L, Neville TP, Millichamp J, Ziesche R, Kardjilov N, Markotter H, Shearing P, Brett DJL, J. Power Sources, 412, 597 (2019)
  18. Simon C, Hasche F, Gasteiger HA, J. Electrochem. Soc., 164(6), F591 (2017)
  19. Kim J, Lee S, Srinivasan S, J. Electrochem. Soc., 8, 2670 (1995)
  20. Squadrito G, Maggio G, Passalacqua E, Lufrano F, Patti A, J. Appl. Electrochem., 29(12), 1449 (1999)
  21. Pisani L, Murgia G, Valentini M, D'Aguanno B, J. Power Sources, 108(1-2), 192 (2002)
  22. Fraser SD, Hacker V, J. Appl. Electrochem., 38(4), 451 (2008)
  23. Hao D, Shen J, Hou Y, Zhou Y, Wang H, Int. J. Chem. Eng., 16, 1 (2016)
  24. Han IS, Park SK, Chung CB, Korean J. Chem. Eng., 33(11), 3121 (2016)