화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.30, No.10, 566-572, October, 2020
2차 버퍼층 ZnMgO 박막의 Mg/(Mg+Zn) 비율 조절을 통한 SnS 박막 태양전지 효율 향상
Improving the Efficiency of SnS Thin Film Solar Cells by Adjusting the Mg/(Mg+Zn) Ratio of Secondary Buffer Layer ZnMgO Thin Film
E-mail:
In the recent years, thin film solar cells (TFSCs) have emerged as a viable replacement for crystalline silicon solar cells and offer a variety of choices, particularly in terms of synthesis processes and substrates (rigid or flexible, metal or insulator). Among the thin-film absorber materials, SnS has great potential for the manufacturing of low-cost TFSCs due to its suitable optical and electrical properties, non-toxic nature, and earth abundancy. However, the efficiency of SnS-based solar cells is found to be in the range of 1 ~ 4 % and remains far below those of CdTe-, CIGS-, and CZTSSe-based TFSCs. Aside from the improvement in the physical properties of absorber layer, enormous efforts have been focused on the development of suitable buffer layer for SnS-based solar cells. Herein, we investigate the device performance of SnS-based TFSCs by introducing double buffer layers, in which CdS is applied as first buffer layer and ZnMgO films is employed as second buffer layer. The effect of the composition ratio (Mg/(Mg+Zn)) of RF sputtered ZnMgO films on the device performance is studied. The structural and optical properties of ZnMgO films with various Mg/(Mg+Zn) ratios are also analyzed systemically. The fabricated SnS-based TFSCs with device structure of SLG/Mo/SnS/CdS/ZnMgO/AZO/Al exhibit a highest cell efficiency of 1.84 % along with open-circuit voltage of 0.302 V, short-circuit current density of 13.55 mA cm-2, and fill factor of 0.45 with an optimum Mg/(Mg + Zn) ratio of 0.02.
  1. Lee TD, Ebong AU, Renew. Sust. Energ. Rev., 70, 1286 (2017)
  2. Jelle BP, Breivik C, Energy Procedia, 20, 78 (2012)
  3. Boukortt NEI, Patane S, Optik, 218, 165240 (2020)
  4. Green MA, Dunlop ED, Levi DH, Hohl-Ebinger J, Yoshita M, Ho-Baillie AWY, Prog. Photovoltaics., 27, 565 (2019)
  5. Noufi R, Zweibel K, in Proceedings of IEEE 4th World Conference on Photovoltaic Energy Conversion (Wailoloa, Hawaii, May 2006).
  6. Sinsermsuksakul P, Sun L, Lee SW, Park HH, Kim SB, Yang C, Gordon RG, Adv. Eng. Mater., 4, 140049 (2014)
  7. Yan C, Huang J, Sun K, Johnston S, Zhang Y, et al., Nat. Energy, 3, 764 (2018)
  8. Bag S, Gunawan O, Gokmen T, Zhu Y, Todorov TK, Mitzi DB, Energy Environ. Sci., 5, 7060 (2012)
  9. Song DH, Kim SH, Kim SY, Kim YI, Sim JH, et al., J. Mater. Chem. A, 7, 25279 (2019)
  10. Wang L, Li DB, Li K, Chen C, Deng HX, Gao L, et al., Nat. Energy, 2, 17046 (2017)
  11. Lee BH, Yoo HS, Jang JS, Lee IJ, Kim JH, Jo EA, Kim JH, Korean J. Mater. Res., 29(9), 553 (2019)
  12. Wadia C, Alivisatos AP, Kammen DM, Environ. Sci. Technol., 43, 2072 (2009)
  13. Zakutayev A, Green Sustainable Chem., 4, 8 (2017)
  14. Sharma S, Jain KK, Sharma A, Mater. Sci. Appl., 06, 1145 (2015)
  15. Banai RE, Horn MW, Brownson JRS, Sol. Energy Mater. Sol. Cells, 150, 112 (2016)
  16. Sinsermsuksakul P, Heo J, Noh W, Hock AS, Gordon RG, Adv. Eng. Mater., 1, 1116 (2011)
  17. Kawano Y, Chantana J, Minemoto T, Curr. Appl. Phys., 15(8), 897 (2015)
  18. Agbenyeke RE, Song S, Park BK, Kim GH, Yun JH, Chung TM, Kim CG, Han JH, Prog. Photovoltaics, 26, 745 (2018)
  19. Sinha S, Nandi DK, Kim SH, Heo J, Sol. Energy Mater. Sol. Cells, 176, 49 (2018)
  20. Pawar PS, Cho JY, Neerugatti KE, Sinha S, Rana TR, Ahn S, Heo J, ACS Appl. Mater. Interfaces., 12, 7001 (2020)
  21. Miyawaki T, Ichimura M, Mater. Lett., 61, 4683 (2007)
  22. Ikuno T, Suzuki R, Kitazumi K, Takahashi N, Kato N, Higuchi K, Appl. Phys. Lett., 102, 193901 (2013)
  23. Rau U, Schmidt M, Thin Solid Films, 387(1-2), 141 (2001)
  24. Weinhardt L, Heske C, Umbach E, Niesen TP, Visbeck S, Karg F, Appl. Phys. Lett., 84, 3175 (2004)
  25. Shi JH, Huang SM, Chu JB, Zhu HB, et al., J. Mater. Sci.: Mater. Electron., 21, 1005 (2009)
  26. Lim D, Suh H, Suryawanshi M, Song GY, Cho JY, et al., Adv. Eng. Mater., 8, 170260 (2018)
  27. Lee D, Cho JY, Yun HS, Lee DK, Kim T, Bang K, Lee YS, Kim HY, Heo J, J. Mater. Chem. A, 7, 7186 (2019)
  28. Elmorsi TM, Elsayed MH, Bakr MF, Can. J. Chem., 95, 590 (2017)
  29. Mahadeva SK, Fan J, Biswas A, Sreelatha KS, Belova L, Rao KV, Nanomaterials, 3, 486 (2013)
  30. Yu HK, Lee JL, Cryst. Growth Des., 10, 5200 (2010)
  31. Sirohi S, Sharma TP, Opt. Mater., 13, 267 (1999)
  32. Srikant V, Clarke DR, J. Appl. Phys., 83, 5447 (1998)
  33. Roessler DM, Walker WC, Phys. Rev., 159, 733 (1967)
  34. Olson DC, Shaheen SE, White MS, Mitchell WJ, van Hest MFAM, Collins RT, Ginley DS, Adv. Funct. Mater., 17(2), 264 (2007)
  35. Minemoto T, Hashimoto Y, Satoh T, Negami T, Takakura H, Hamakawa Y, J. Appl. Phys., 89, 8327 (2001)
  36. Mohammadnejad S, Bahnamiri ZM, Maklavani SE, Superlattices Microstruct., 144, 106587 (2020)
  37. Hegedus SS, Shafarman WN, Prog. Photovoltaics, 12, 155 (2004)
  38. Yoshino K, Oyama S, Yoneta M, J. Mater. Sci.: Mater. Electron., 19, 203 (2007)
  39. Kaushal A, Kaur D, Sol. Energy Mater. Sol. Cells, 93(2), 193 (2009)