Journal of Industrial and Engineering Chemistry, Vol.90, 159-165, October, 2020
The influence of water-induced crystallization on the photoelectrochemical properties of porous anodic tin oxide films
E-mail:
Nanoporous SnOx films with ultra-small channels (<20 nm in diameter) were synthesized by one-step anodic oxidation of Sn foil in 1 M sodium hydroxide. Then, as-prepared materials were immersed in distilled water for various durations (2-120 h) to find out whether a simple soaking process can affect the photoelectrochemical performance of such kind of photoanodes. It was confirmed that during exposure to water, spontaneous crystallization of the amorphous SnOx matrix into rutile-type SnO2 occurs via a dissolution.redeposition process, which results in a gradual loss of the initial porous morphology and thinning of the anodic film. Moreover, due to the formation of less defective, more stoichiometric, and crystalline SnO2-x, gradual widening of the semiconductor band gap, the cathodic shift of the flat band and onset potentials, as well as decrease in the donor density are observed. All these factors are the reason for the significant deterioration of the photoelectrochemical performance of SnOx photoanodes during their exposure to water. Therefore, it was confirmed that even slight differences in the experimental procedure, especially sample washing, drying, and storage, can result in meaningful changes in the composition, and the photoelectrochemical properties of anodically generated tin oxide films.
- Sulka GD(Ed.), Nanostructured Anodic Metal Oxides: Synthesis and Applications, 1st ed., Elsevier, 2020.
- Momeni MM, Nazari Z, Ceram. Int., 42, 8691 (2016)
- Syrek K, Sennik-Kubiec A, Rodriguez-Lopez J, Rutkowska M, Zmudzki P, Hnida-Gut KE, Grudzien J, Chmielarz L, Sulka GD, Int. J. Hydrog. Energy, 45(7), 4376 (2020)
- Liu N, Albu SP, Lee K, So S, Schmuki P, Electrochim. Acta, 82, 98 (2012)
- Hwang I, So S, Mokhtar M, Alshehri A, Al-Thabaiti SA, Mazare A, Schmuki P, Chem. Eur. J., 21, 9204 (2015)
- Regonini D, Chen G, Leach C, Clemens FJ, Electrochim. Acta, 213, 31 (2016)
- Chatzitakis A, Grandcolas M, Xu KQ, Mei S, Yang J, Jensen IJT, Simon C, Norby T, Catal. Today, 287, 161 (2017)
- Kapusta-Kolodziej J, Syrek K, Sulka GD, J. Electrochem. Soc., 165(13), H838 (2018)
- Reyes-Gil KR, Wiggenhorn C, Brunschwig BS, Lewis NS, J. Phys. Chem. C, 117, 14947 (2013)
- Syrek K, Zych M, Zaraska L, Sulka GD, Electrochim. Acta, 231, 61 (2017)
- Rangaraju RR, Panday A, Raja KS, Misra M, J. Phys. D-Appl. Phys., 42, 135303 (2009)
- Jun H, Im B, Kim JY, Im YO, Jang JW, Kim ES, Kim JY, Kang HJ, Hong SJ, Energy Environ. Sci., 5, 6375 (2012)
- Momeni MM, Ghayeb Y, Hallaj A, Bagheri R, Songd Z, Farrokhpour H, Mater. Lett., 237, 188 (2019)
- Momeni MM, Mirhosseini M, Chavoshi M, Hakimizade A, J. Mater. Sci: Mater. Electron., 27, 3941 (2016)
- Shu X, Zheng HM, Xu GQ, Zhao JB, Cui LH, Cui JW, Qin YQ, Wang Y, Zhang Y, Wu YC, Appl. Surf. Sci., 412, 505 (2017)
- Zhang Z, Wang P, J. Mater. Chem., 22, 2456 (2012)
- Momeni MM, Ghayeb Y, Menati M, J. Mater. Sci: Mater. Electron, 27, 9454 (2016)
- Palacios-Padros A, Altomare M, Lee K, Diez-Perez I, Sanz F, Schmuki P, ChemElectroChem, 1, 1133 (2014)
- Zaraska L, Syrek K, Hnida KE, Bobruk M, Krzysik A, Lojewski T, Jaskula M, Sulka GD, Electrochim. Acta, 205, 273 (2016)
- Zaraska L, Gawlak K, Gurgul M, Chlebda DK, Socha RP, Sulka GD, Electrochim. Acta, 254, 238 (2017)
- Pawlik A, Hnida K, Socha RP, Wiercigroch E, Malek K, Sulka GD, Appl. Surf. Sci., 426, 1084 (2017)
- Zaraska L, Gawlak K, Wiercigroch E, Malek K, Koziel M, Andrzejczuk M, Marzec MM, Jarosz M, Brzozka A, Sulka GD, Electrochim. Acta, 319, 18 (2019)
- Wang D, Liu L, Zhang F, Tao K, Pippel E, Domen K, Nano Lett., 11, 3649 (2011)
- Liao Y, Que W, Zhong P, Zhang J, He Y, ACS Appl. Mater. Interfaces, 3, 2800 (2011)
- Liao Y, Wang X, Ma Y, Li J, Wen T, Jia L, Zhong Z, Wang L, Zhang D, Cryst. Growth Des., 16, 1786 (2016)
- Bian H, Dong R, Shao Q, Wang S, Yuen MF, Zhang Z, Yu DYW, Zhang W, Lu J, Li YY, J. Mater. Chem. A, 5, 23967 (2017)
- Chen H, Guo A, Huang S, Zhu J, Cheng L, Mater. Res. Express, 4, 055019 (2017)
- Horcas I, Fernandez R, Gomez-Rodriguez RM, Colchero J, Gomez-Herrero J, Baro AM, Rev. Sci. Instrum., 78, 013705 (2007)
- ICDD, Soorya Kabekkodu (Eds.), PDF-4+ 2019 (Database), International Centre for Diffraction Data, Newtown Square, PA, USA, 2019.
- The HighScore suite, Degen R, Sadki M, Bron E, Konig U, Nenert G, Powder Diffract. 29 (S2) (2014 December) S13-S18.
- Zaraska L, Gilek D, Gawlak K, Jaskula M, Sulka GD, Appl. Surf. Sci., 390, 31 (2016)
- Zaraska L, Gawlak K, Gilek D, Sulka GD, Appl. Surf. Sci., 455, 1005 (2018)
- Avis CH, Kim YG, Jang J, Materials, 12, 3341 (2019)
- Shin HC, Dong J, Liu ML, Adv. Mater., 16(3), 237 (2004)
- Wang ML, Liu YN, Xue DF, Zhang DK, Yang H, Electrochim. Acta, 56(24), 8797 (2011)
- Lamberti A, Chiodoni A, Shahzad N, Bianco S, Quaglio M, Pirri CF, Sci. Rep., 7, 7808 (2015)
- Wang J, Li H, Meng S, Ye X, Fu X, Chen S, RSC Adv., 7, 27024 (2017)
- Nose K, Suzuki AY, Oda N, Kamiko M, Mitsuda Y, Appl. Phys. Lett., 091905 (2014).
- Gelderman K, Lee L, Donne SW, J. Chem. Educ., 84, 685 (2007)
- Palacios-Padros A, Caballero-Briones F, Diez-Perez I, Sanz F, Electrochim. Acta, 111, 837 (2013)
- Metikos-Hukovic M, Seruga M, Ferina S, Ber. Bunsenges. Phys. Chem., 96, 799 (1992)
- Munoz AG, Electrochim. Acta, 52(12), 4167 (2007)
- Shinde PS, Choi SH, Kim Y, Ryu J, Jang JS, Phys. Chem. Chem. Phys., 18, 2495 (2016)
- Wysocka I, Kowalska E, Trzcinski K, Lapinski M, Nowaczyk G, Zielinska-Jurek A, Nanomaterials, 8, 28 (2018)
- Katic J, Metikos-Hukovic M, Saric I, Petravic M, J. Electrochem. Soc., 163(5), C221 (2016)
- Schultze JW, Lohrengel MM, Electrochim. Acta, 45(15-16), 2499 (2000)
- Delgado RD, Tin Oxide Gas Sensors: An Electrochemical Approach, PhD Thesis, University of Barcelona, Barcelona, 2002.
- Iandolo B, Zhang H, Wickman B, Zoric I, Conibeer G, Hellman A, RSC Adv., 5, 61021 (2015)
- Chen Z, Dinh HN, Miller E, Photoelectrochemical Water Splitting: Standards, Experimental Methods, and Protocols, Springer, 2013.