화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.90, 244-250, October, 2020
Thermal stability study of HFO-1234ze(E) for supercritical organic Rankine cycle: Chemical kinetic model approach through decomposition experiments
E-mail:,
The supercritical organic Rankine cycle (SORC) is considered as a potential technique for converting heat waste resources to electricity. Owing to its low global warming potential, HFO-1234ze(E) (trans-1,3,3,3- tetrafluoroprop-1-ene) is a suitable working fluid for the SORC system. This paper proposes a simple kinetic method for evaluating the thermal decomposition of HFO-1234ze(E) based on the temperatures and pressures in the SORC loop. A long-term decomposition test conducted at temperatures of 433.15. 473.15 K under a pressure of 5.0 MPa was used to establish a kinetic equation based on the first-order kinetic model. At 423.15 K, in the high-temperature region of the SORC loop, the decomposition rate of HFO-1234ze(E) was only 1.25% for the 50-year continuous running cycle. When the temperature of the high-temperature region increased by 20 K and 40 K, decompositions of HFO-1234ze(E) significantly increased to 5.24% and 18.40%, respectively, which highlights the high sensitivity of the thermal decomposition rate toward the temperature in the SORC loop.
  1. Quoilin S, Declaye S, Tchanche BF, Lemort V, Appl. Therm. Eng., 31, 2885 (2011)
  2. Franco A, Energy Sustainable Dev., 15, 411 (2011)
  3. Meinel D, Wieland C, Spliethoff H, Therm. Eng., 63, 246 (2014)
  4. Wang M, Wnag J, Zhao Y, Zhao P, Dai Y, Appl. Therm. Eng., 50, 816 (2013)
  5. Shi L, Shu G, Tian H, Deng S, Renew. Sust. Energy, 92, 95 (2018)
  6. Hung TC, Shai TY, Wang SK, Energy, 22, 661 (1997)
  7. Lecompte S, Huisseune H, Van Den Broek M, Vanslambrouck B, Paepe MD, Renew. Sust. Energ. Rev., 47, 448 (2015)
  8. Velez F, Segovia J, Chejne F, Antolin G, Quijano A, Martin MC, Energy, 36(9), 5497 (2011)
  9. Jingye Y, Ziyang S, Binbin Y, Jiangping C, Appl. Therm. Eng., 141, 10 (2018)
  10. Schuster A, Karellas S, Aumann R, Energy, 35(2), 1033 (2010)
  11. Braimakis K, Preissinger M, Bruggemann D, Karellas S, Panopoulos K, Energy, 88, 80 (2015)
  12. Zhang SJ, Wang HX, Guo T, Appl. Energy, 88(8), 2740 (2011)
  13. Maraver D, Royo J, Lemort V, Quoilin S, Appl. Energy, 117, 11 (2014)
  14. Aljundi IH, Renew. Energy, 36(4), 1196 (2011)
  15. Badr O, Probert SD, O’Callaghan PW, Appl. Energy, 21, 1 (1985)
  16. Saleh B, Koglbauer G, Wendland M, J. Fischer, Energy, 32, 1210 (2007)
  17. Frutiger J, Andreasen J, Liu W, Spliethoff H, Haglind F, Abildskov J, Sin G, Energy, 109, 987 (2016)
  18. Tchanche BF, Papadakis G, Lambrinos G, Frangoudakis A, Appl. Therm. Eng., 29, 2468 (2009)
  19. Astolfi M, Romano MC, Bombarda P, Macchi E, Energy, 66, 423 (2014)
  20. Kang SH, Energy, 41(1), 514 (2012)
  21. Calm JM, Int. J. Refrig., 31, 1123 (2008)
  22. Moles F, Navarro-Esbri J, Peris B, Mota-Babiloni A, Appl. Therm. Eng., 98, 954 (2016)
  23. Luo D, Mahmoud A, Cogswell F, Energy, 85, 481 (2015)
  24. Le VL, Feidt M, Kheiri A, Pelloux-Prayer S, Energy, 67, 513 (2014)
  25. Eyerer S, Dawo F, Kaindl J, Wieland C, Spliethoff HM, Appl. Energy, 240, 946 (2019)
  26. Matsugi A, Takahashi K, J. Phys. Chem. A, 121(26), 4881 (2017)
  27. Pu Y, Liu C, Li Q, Xu X, Huo E, Int. J. Refrig., 109, 82 (2020)
  28. Dai X, Shi L, An Q, Qjan W, Appl. Therm. Eng., 128, 1095 (2018)
  29. Pasetti M, Invernizzi CM, Iora P, Appl. Therm. Eng., 73, 764 (2014)
  30. Huo E, Liu C, Xin L, Li X, Xu X, Li Q, Wang S, Dang C, M. Pasetti, C.M. Invernizzi, P. Iora, 43, 4630 (2019)
  31. Irriyanto MZ, Lim HS, Choi BS, Myint AA, Kim JH, J. Supercrit. Fluids, 154, 104602 (2019)
  32. Andersen WC, Bruno TJ, Ind. Eng. Chem. Res., 44(15), 5560 (2005)
  33. Gunawan R, Irriyanto MZ, Cahyadi HS, Irshad M, Lim HS, Choi BS, Kwak SK, Myint AA, Kim JH, J. Supercrit. Fluids, 160, 104792 (2020)
  34. Feng YQ, Zhang YN, Li BX, Yang JF, Shi Y, Energy, 82, 664 (2015)