Journal of Industrial and Engineering Chemistry, Vol.90, 244-250, October, 2020
Thermal stability study of HFO-1234ze(E) for supercritical organic Rankine cycle: Chemical kinetic model approach through decomposition experiments
E-mail:,
The supercritical organic Rankine cycle (SORC) is considered as a potential technique for converting heat waste resources to electricity. Owing to its low global warming potential, HFO-1234ze(E) (trans-1,3,3,3- tetrafluoroprop-1-ene) is a suitable working fluid for the SORC system. This paper proposes a simple kinetic method for evaluating the thermal decomposition of HFO-1234ze(E) based on the temperatures and pressures in the SORC loop. A long-term decomposition test conducted at temperatures of 433.15. 473.15 K under a pressure of 5.0 MPa was used to establish a kinetic equation based on the first-order kinetic model. At 423.15 K, in the high-temperature region of the SORC loop, the decomposition rate of HFO-1234ze(E) was only 1.25% for the 50-year continuous running cycle. When the temperature of the high-temperature region increased by 20 K and 40 K, decompositions of HFO-1234ze(E) significantly increased to 5.24% and 18.40%, respectively, which highlights the high sensitivity of the thermal decomposition rate toward the temperature in the SORC loop.
- Quoilin S, Declaye S, Tchanche BF, Lemort V, Appl. Therm. Eng., 31, 2885 (2011)
- Franco A, Energy Sustainable Dev., 15, 411 (2011)
- Meinel D, Wieland C, Spliethoff H, Therm. Eng., 63, 246 (2014)
- Wang M, Wnag J, Zhao Y, Zhao P, Dai Y, Appl. Therm. Eng., 50, 816 (2013)
- Shi L, Shu G, Tian H, Deng S, Renew. Sust. Energy, 92, 95 (2018)
- Hung TC, Shai TY, Wang SK, Energy, 22, 661 (1997)
- Lecompte S, Huisseune H, Van Den Broek M, Vanslambrouck B, Paepe MD, Renew. Sust. Energ. Rev., 47, 448 (2015)
- Velez F, Segovia J, Chejne F, Antolin G, Quijano A, Martin MC, Energy, 36(9), 5497 (2011)
- Jingye Y, Ziyang S, Binbin Y, Jiangping C, Appl. Therm. Eng., 141, 10 (2018)
- Schuster A, Karellas S, Aumann R, Energy, 35(2), 1033 (2010)
- Braimakis K, Preissinger M, Bruggemann D, Karellas S, Panopoulos K, Energy, 88, 80 (2015)
- Zhang SJ, Wang HX, Guo T, Appl. Energy, 88(8), 2740 (2011)
- Maraver D, Royo J, Lemort V, Quoilin S, Appl. Energy, 117, 11 (2014)
- Aljundi IH, Renew. Energy, 36(4), 1196 (2011)
- Badr O, Probert SD, O’Callaghan PW, Appl. Energy, 21, 1 (1985)
- Saleh B, Koglbauer G, Wendland M, J. Fischer, Energy, 32, 1210 (2007)
- Frutiger J, Andreasen J, Liu W, Spliethoff H, Haglind F, Abildskov J, Sin G, Energy, 109, 987 (2016)
- Tchanche BF, Papadakis G, Lambrinos G, Frangoudakis A, Appl. Therm. Eng., 29, 2468 (2009)
- Astolfi M, Romano MC, Bombarda P, Macchi E, Energy, 66, 423 (2014)
- Kang SH, Energy, 41(1), 514 (2012)
- Calm JM, Int. J. Refrig., 31, 1123 (2008)
- Moles F, Navarro-Esbri J, Peris B, Mota-Babiloni A, Appl. Therm. Eng., 98, 954 (2016)
- Luo D, Mahmoud A, Cogswell F, Energy, 85, 481 (2015)
- Le VL, Feidt M, Kheiri A, Pelloux-Prayer S, Energy, 67, 513 (2014)
- Eyerer S, Dawo F, Kaindl J, Wieland C, Spliethoff HM, Appl. Energy, 240, 946 (2019)
- Matsugi A, Takahashi K, J. Phys. Chem. A, 121(26), 4881 (2017)
- Pu Y, Liu C, Li Q, Xu X, Huo E, Int. J. Refrig., 109, 82 (2020)
- Dai X, Shi L, An Q, Qjan W, Appl. Therm. Eng., 128, 1095 (2018)
- Pasetti M, Invernizzi CM, Iora P, Appl. Therm. Eng., 73, 764 (2014)
- Huo E, Liu C, Xin L, Li X, Xu X, Li Q, Wang S, Dang C, M. Pasetti, C.M. Invernizzi, P. Iora, 43, 4630 (2019)
- Irriyanto MZ, Lim HS, Choi BS, Myint AA, Kim JH, J. Supercrit. Fluids, 154, 104602 (2019)
- Andersen WC, Bruno TJ, Ind. Eng. Chem. Res., 44(15), 5560 (2005)
- Gunawan R, Irriyanto MZ, Cahyadi HS, Irshad M, Lim HS, Choi BS, Kwak SK, Myint AA, Kim JH, J. Supercrit. Fluids, 160, 104792 (2020)
- Feng YQ, Zhang YN, Li BX, Yang JF, Shi Y, Energy, 82, 664 (2015)