화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.90, 327-332, October, 2020
Prism patterned TiO2 layers/Nafion1 composite membrane for elevated temperature/low relative humidity fuel cell operation
E-mail:,
A simple and facile way of modifying commercial membranes for effective fuel cell operation under elevated temperature/low relative humidity conditions has been developed. Instead of using the conventional casting and evaporation method involving the mixed Nafion1 ionomer and inorganic fillers, a TiO2/Nafion1 composite membrane was fabricated by transferring uniformly constructed porous TiO2 layers from a Si wafer to the Nafion1 membrane via spin-coating, followed by a thermal imprinting process. From the process, filler agglomeration was prevented during the solvent evaporation, which secured water retention effect of the hygroscopic TiO2 layers. Furthermore, the prepared TiO2/Nafion1 composite membrane was subjected to an additional prism patterning process to provide more proton pathways by enlarging the interfacial surface area between the composite membrane and the catalyst layer, and offset the reduced proton conductivity due to insertion of the inorganic fillers. The modified membrane exhibited highly improved performance compared to the pristine Nafion1 211 membrane under elevated temperature/low humidity conditions.
  1. Evensen D, Nature Energy, 2, 17106 (2017)
  2. Kirubakaran A, Jain S, Nema R, Renew. Sust. Energ. Rev., 13, 2430 (2009)
  3. Migliardini F, Veneri O, Corbo P, J. Ind. Eng. Chem., 17(3), 633 (2011)
  4. Tian ZQ, Lim SH, Poh CK, Tang Z, Xia Z, Luo Z, Shen PK, Chua D, Feng YP, Shen Z, Adv. Eng. Mater., 1, 1205 (2011)
  5. Yuk S, Choo MJ, Lee D, Guim H, Kim TH, Lee DG, Choi S, Lee DH, Doo G, Hong YT, Adv. Mater., 29, 160305 (2017)
  6. He D, Tang H, Kou Z, Pan M, Sun X, Zhang J, Mu S, Adv. Mater., 29, 160174 (2017)
  7. Kang YS, Park T, Jang S, Choi M, Yoo SJ, Cha SW, J. Ind. Eng. Chem., 47, 323 (2017)
  8. Rethinasabapathy M, Kang SM, Haldorai Y, Jonna N, Jankiraman M, Lee GW, Jang SC, Natesan B, Roh CH, Huh YS, J. Ind. Eng. Chem., 69, 285 (2019)
  9. O’hayre R, Cha SW, Prinz FB, Colella W, Fuel Cell Fundamentals, John Wiley & Sons, 2016.
  10. Jang S, Kim M, Kang YS, Choi YW, Kim SM, Sung YE, Choi M, ACS Appl. Mater. Interfaces, 8, 11459 (2016)
  11. Ahn CY, Jang S, Cho YH, Choi J, Kim S, Kim SM, Sung YE, Choi M, Scient. Rep., 8, 1257 (2018)
  12. Wolz A, Zils S, Ruch D, Kotov N, Roth C, Michel M, Adv. Eng. Mater., 2, 569 (2012)
  13. Chalkova E, Pague MB, Fedkin MV, Wesolowski DJ, Lvov SN, J. Electrochem. Soc., 152(6), A1035 (2005)
  14. Amjadi M, Rowshanzamir S, Peighambardoust SJ, Hosseini MG, Eikani MH, Int. J. Hydrog. Energy, 35(17), 9252 (2010)
  15. Lee C, Park J, Jeon Y, Park JI, Einaga H, Truong YB, Kyratzis IL, Mochida I, Choi J, Shul YG, Energy Fuels, 31(7), 7645 (2017)
  16. Ramani V, Kunz HR, Fenton JM, J. Membr. Sci., 232(1-2), 31 (2004)
  17. Santiago EI, Isidoro RA, Dresch MA, Matos BR, Linardi M, Fonseca FC, Electrochim. Acta, 54(16), 4111 (2009)
  18. Thiam HS, Daud WRW, Kamarudin SK, Mohammad AB, Kadhum AAH, Loh KS, Majlan EH, Int. J. Hydrog. Energy, 36(4), 3187 (2011)
  19. Devrim Y, Erkan S, Bac N, Eroglu I, Int. J. Hydrog. Energy, 37(21), 16748 (2012)
  20. Ramani V, Kunz HR, Fenton JM, Electrochim. Acta, 50(5), 1181 (2005)
  21. Kim DJ, Jo MJ, Nam SY, J. Ind. Eng. Chem., 21, 36 (2015)
  22. Kim S, Hong I, J. Ind. Eng. Chem., 16(6), 901 (2010)
  23. Mohammadi G, Jahanshahi M, Rahimpour A, Int. J. Hydrog. Energy, 38(22), 9387 (2013)
  24. Dresch MA, Isidoro RA, Linardi M, Rey JFQ, Fonseca FC, Santiago EI, Electrochim. Acta, 94, 353 (2013)
  25. Adjemian KT, Lee SJ, Srinivasan S, Benziger J, Bocarsly AB, J. Electrochem. Soc., 149(3), A256 (2002)
  26. Chalkova E, Fedkin MV, Wesolowski DJ, Lvov SN, J. Electrochem. Soc., 152(9), A1742 (2005)
  27. Song JM, Woo HS, Sohn JY, Shin J, J. Ind. Eng. Chem., 36, 132 (2016)