화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.90, 407-418, October, 2020
Optimization of acridine orange loading on 1:1 layered clay minerals for fluorescence enhancement
E-mail:,
As a cationic fluorescence dye acridine orange (AO) is commonly used in biology and biochemistry for DNA analyses. In this study the light absorption and fluorescence of AO after being sorbed on kaolinite (Kao) and halloysite (Hal) were investigated. In dilute systems with initial AO concentrations of 1 X 10-6 to 1 X 10-4M (0.3.25 μmol/g loadings on Kao), both light absorption and fluorescence emission increased as the initial AO concentrations, thus, the amounts of AO sorbed increased. In contrast, the light absorption and fluorescence emission reached maxima at 1 X 10-M (3 μmol/g) for Hal. In concentrated systems with initial AO concentrations of 5 X 10 -4 -5 X10-3M (22.57 and 50.126 μmol/g AO sorption on Kao and Hal), significant fluorescence quenching was observed and the fluorescence intensity decreased as the initial AO concentrations, thus, the amounts of AO sorbed increased. The results suggested that to achieve maximal fluorescence emission, monomeric AO configuration on the solid surface is a necessity. The AO sorption was mostly attributed to cation exchange between protonated AO and exchangeable cations on Kao and Hal surfaces. As such, both cation exchange capacity and specific surface area of the minerals control the maximal fluorescence emission.
  1. Lakowicz JR, Principles of Fluorescence Spectroscopy, 3rd ed., Springer, Boston, MA, p.954 2006.
  2. Villemure G, Detellier C, Szabo AG, J. Am. Chem. Soc., 108, 4658 (1986)
  3. Shichi T, Takagi K, J. Photochem. Photobiol. C: Photochem. Rev., 1, 113 (2000)
  4. Wlodarczyk P, Komarneni S, Roy R, White WB, J. Mater. Chem., 6, 1967 (1996)
  5. Pustkova P, Klika Z, Preclikova J, Grygar TM, Clay Miner., 46, 93 (2011)
  6. Joseph LK, et al., IOP Conference Series: Materials Science and Engineering, 73, IOP Publishing, 2015012040.
  7. Yuan P, Tan D, Annabi-Bergaya F, Appl. Clay Sci., 112, 75 (2015)
  8. Sargin I, Unlu N, Clay Miner., 48, 85 (2013)
  9. Sarma GK, Gupta SS, Bhattacharyya KG, SN Appl. Sci., 1, 211 (2019)
  10. Harris RG, Johnson BB, Wells JD, Clays Clay Miner., 54, 435 (2006)
  11. Kryuchkova M, Fakhrullin R, Environ. Sci. Technol. Lett., 5, 295 (2018)
  12. Zhao M, Liu P, Microporous Mesoporous Mater., 112, 419 (2008)
  13. Liu RC, Zhang B, Mei DD, Zhang HQ, Liu JD, Desalination, 268(1-3), 111 (2011)
  14. Krasilin AA, Danilovich DP, Yudina EB, Bruyere S, Ghanbaja J, Ivanov VK, Appl. Clay Sci., 173, 1 (2019)
  15. Kiani G, Dostali M, Rostami A, Khataee AR, Appl. Clay Sci., 54, 34 (2011)
  16. Luo P, Zhao Y, Zhang B, Liu J, Yang Y, Liu J, Water Res., 44, 1489 (2010)
  17. Mico-Vicent B, Martinez-Verdu FM, Novikov A, Stavitskaya A, Vinokurov V, Rozhina E, Fakhrullin R, Yendluri R, Lvov Y, Adv. Funct. Mater., 28, 170355 (2018)
  18. Massaro M, Colletti CG, Lazzara G, Guernelli S, Noto R, Riela S, ACS Sustain. Chem. Eng., 5, 3346 (2017)
  19. Cavallaro G, Chiappisi L, Pasbakhsh P, Gradzielski M, Lazzara G, Appl. Clay Sci., 160, 71 (2018)
  20. Darzynkiewicz Z, Methods in Cell Biology, Vol. 33, Academic Press, pp.285 1990.
  21. Khan SA, Khan SB, Asiri AM, Sci. Rep., 6, 35107 (2016)
  22. Qadri S, Ganoe A, Haik Y, J. Hazard. Mater., 169(1-3), 318 (2009)
  23. Lv GC, Li ZH, Jiang WT, Chang PH, Jean JS, Lin KH, Chem. Eng. J., 174(2-3), 603 (2011)
  24. Lv G, Wu L, Liao L, Jiang WT, Li Z, Desalin. Water Treat, 52, 7323 (2014)
  25. Cohen R, Yariv S, J. Chem. Soc. Faraday Trans. 1: Phys. Chem. Condens. Phases 80, 1705 (1984).
  26. Schoonheydt RA, Cenens J, De Schrijver FC, J. Chem. Soc.-Faraday Trans., 82, 281 (1986)
  27. Garfinkel-Shweky D, Yariv S, Clay Miner., 32, 653 (1997)
  28. Garfinkelshweky D, Yariv S, J. Colloid Interface Sci., 188(1), 168 (1997)
  29. Bujdak J, Iyi N, Clays Clay Miner., 50, 446 (2002)
  30. Wilkinson F, Worrall DR, Ferreira LV, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 48, 135 (1992)
  31. Rawtani D, Agrawal YK, BioNanoScience, 3, 52 (2013)
  32. Robinson BH, Loffler A, Schwarz G, J. Chem. Soc.-Faraday Trans., 69, 56 (1973)
  33. Lamm ME, Neville DM, J. Phys. Chem., 69, 3872 (1965)
  34. Falcone RD, Correa NM, Biasutti MA, Silber JJ, Langmuir, 18(6), 2039 (2002)
  35. Ridler PJ, Jennings BR, Clay Miner., 15, 121 (1980)
  36. Borden D, Giese RF, Clays Clay Miner., 49, 444 (2001)
  37. Jiang WT, Chang PH, Tsai Y, Li Z, Microporous Mesoporous Mater., 220, 298 (2016)
  38. Lisuzzo L, Cavallaro G, Pasbakh P, Milioto S, Lazzara G, J. Colloid Interface Sci., 547, 361 (2019)
  39. Jiang WT, Tsai Y, Wang X, Li Z, Appl. Clay Sci., 189, 105534 (2020)
  40. Avena MJ, Valenti LE, Pfaffen V, De Pauli CP, Clays Clay Miner., 49, 168 (2001)
  41. Chen H, Yan H, Pei ZZ, Wu JY, Li RR, Jin YX, Zhao J, Appl. Surf. Sci., 347, 769 (2015)
  42. De Rossi U, Dahne S, Meskers SC, Dekkers HP, Angew. Chem.-Int. Edit., 35, 760 (1996)
  43. Antonov L, Gergov G, Petrov V, Kubista M, Nygren J, Talanta, 49, 99 (1999)
  44. Bujdak J, Appl. Clay Sci., 34, 58 (2006)
  45. Martynkova GS, Kulhankova L, Maly P, Capkova P, Nanosci. Nanotechnol., 8, 1 (2007)
  46. Leodopoulos C, Doulia D, Gimouhopoulos K, Sep. Purif. Rev., 44, 74 (2015)
  47. Ghosh AK, Samanta A, Bandyopadhyay P, Chem. Phys. Lett., 507(1-3), 162 (2011)
  48. Huang W, Dedzo GK, Stoyanov SR, Lyubimova O, Gusarov S, Singh S, Lao H, Kovalenko A, Detellier C, J. Phys. Chem. C, 118, 23821 (2014)
  49. Singh B, Clays Clay Miner., 44, 191 (1996)
  50. Meng F, Liu Y, Niu J, Lin W, Tetrahedron Lett., 58, 3287 (2017)
  51. Runov KV, Russian J. Phys. Chem., 72, 827 (1998)
  52. Greathouse JA, Pike DG, Greenwell HC, Johnston CT, Wilcox J, Cygan RT, Clays Clay Miner., 63, 185 (2015)