화학공학소재연구정보센터
Korea-Australia Rheology Journal, Vol.32, No.4, 319-329, November, 2020
Flow and mixing characteristics of a groove-embedded partitioned pipe mixer
E-mail:
We propose a groove-embedded partitioned pipe mixer (GPPM) and conduct an in-depth numerical study on the flow and mixing characteristics of the GPPM in the creeping flow regime. The GPPM is a variant of a previously reported mixer, the barrier-embedded partitioned pipe mixer (BPPM), and is designed to achieve better energy-efficient mixing compared to the BPPM. In this paper, we first introduce the working principle of the GPPM and its mixing protocols. Then, the flow system affected by mixing protocols and geometrical parameters of the GPPM is investigated using Poincare sections. As for mixing characteristics, the flux-weighted intensity of segregation is employed for quantitative mixing analysis. It turns out that a GPPM with a proper set of design parameters can indeed lead to a globally chaotic mixing. More importantly, the best GPPM showed better mixing in terms of energy consumption compared to its counterpart, the best BPPM.
  1. Abdolkarimi V, Ganji H, Braz. J. Chem. Eng., 31, 949 (2014)
  2. Ansari MA, Kim KY, Chem. Eng. Sci., 62(23), 6687 (2007)
  3. Aref H, J. Fluid Mech., 143, 1 (1984)
  4. Aubin J, Fletcher DF, Bertrand J, Xuereb C, Chem. Eng. Technol., 26(12), 1262 (2003)
  5. Danckwerts PV, Appl. Sci. Res. A., 3, 279 (1952)
  6. Galaktionov OS, Anderson PD, Peter GWM, Meijer HEH, Int. Polym. Process, 18, 138 (2003)
  7. Gepner SW, Floryan JM, Sci. Rep., 10, 9865 (2020)
  8. Ghanem A, Lemenand T, Della Valle D, Peerhossaini H, Chem. Eng. Res. Des., 92(2), 205 (2014)
  9. Hwang WR, Kwon TH, Polym. Eng. Sci., 40(3), 702 (2000)
  10. Jana SC, Tjahjadi M, Ottino JM, AIChE J., 40(11), 1769 (1994)
  11. Jang HK, Kim YJ, Woo NS, Hwang WR, AIChE J., 62(12), 4574 (2016)
  12. Jung HI, Jung SY, Kang TG, Ahn KH, Korea-Aust. Rheol. J., 30(3), 227 (2018)
  13. Jung SY, Ahn KH, Kang TG, Park GT, Kim SU, AIChE J., 64(2), 717 (2018)
  14. Jung SY, Ahn KH, J. Membr. Sci., 572, 309 (2019)
  15. Jung SY, Jung HI, Kang TG, Ahn KH, AIChE J., 66, e16792 (2020)
  16. Jung SY, Park JE, Kang TG, Ahn KH, Micromachines, 10, 836 (2019)
  17. Kang TG, Anderson PD, Micromachines, 5, 1270 (2014)
  18. Kang TG, Kwon TH, J. Micromech. Microeng., 14, 891 (2004)
  19. Kang TG, Singh MK, Kwon TH, Anderson PD, Microfluid. Nanofluid., 4, 589 (2008)
  20. Kee SP, Gavriilidis A, Chem. Eng. J., 142(1), 109 (2008)
  21. Khakhar DV, Franjione JG, Ottino JM, Chem. Eng. Sci., 42, 2909 (1987)
  22. Kim DS, Lee SW, Kwon TH, Lee SS, J. Micromech. Microeng., 14, 798 (2004)
  23. Kim SJ, Kwon TH, Adv. Polym. Technol., 15(1), 41 (1996)
  24. Kim SJ, Kwon TH, Adv. Polym. Technol., 15(1), 55 (1996)
  25. Marschewski J, Brechbuhler R, Jung S, Ruch P, Michel B, Poulikakos D, Int. J. Heat Mass Transf., 95, 755 (2016)
  26. Maruf SH, Greenberg AR, Pellegrino J, Ding YF, J. Membr. Sci., 471, 65 (2014)
  27. Meijer HEH, Singh MK, Anderson PD, Prog. Polym. Sci, 37, 1333 (2012)
  28. Meng H, Jiang X, Yu Y, Wang Z, Wu J, Korean J. Chem. Eng., 34(5), 1328 (2017)
  29. Metcalfe G, Rudman M, Brydon A, Graham LJW, Hamilton R, AIChE J., 52(1), 9 (2006)
  30. Mihailova O, Lim V, McCarthy MJ, McCarthy KL, Bakalis S, Chem. Eng. Sci., 137, 1014 (2015)
  31. Ottino JM, Wiggins S, Phil. Trans. R. Soc. Lond. A-Math. Phys. Eng. Sci. 362, 937 2004.
  32. Ottino JM, The Kinematics of Mixing: Stretching, Chaos, and Transport, Cambridge University Press, Cambridge, 1989.
  33. Ren W, Chen Y, Mu X, Khoo BC, Zhang F, Xu Y, Int. J. Therm. Sci., 130, 240 (2018)
  34. Singh MK, Kang TG, Anderson PD, Meijer HEH, Hrymak AN, AIChE J., 55(9), 2208 (2009)
  35. Stroock AD, Dertinger SK, Whitesides GM, Ajdari A, Anal. Chem., 74, 5306 (2002)
  36. Stroock AD, Dertinger SK, Ajdari A, Mezic I, Stone HA, Whitesides GM, Science, 295, 647 (2002)
  37. Suh YK, Kang S, Micromachines, 1, 82 (2010)
  38. Williams MS, Longmuirb KJ, Yager P, Lab Chip, 8, 1121 (2008)