화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.37, No.12, 2117-2123, December, 2020
Direct numerical simulation of microbubble streaming in a microfluidic device: The effect of the bubble protrusion depth on the vortex pattern
E-mail:,
Microbubble streaming in a microfluidic device has been increasingly studied and used in recent years, due to its unique flow pattern that can promote mixing, sort particles and trap particles in microscale flows. However, there have been few numerical studies of this subject. We performed a 3D direct simulation of a cylindrical-shaped microbubble, trapped in a pit of a microchannel and sandwiched between two parallel plates, vibrated by pressure oscillation. Our simulation was able to reproduce the experimentally observed relation between the bubble protrusion depth and the vortex pattern: As the bubble protrusion depth increased, new vortices emerged and grew larger. Our investigation of the streamlines near the bubble interface indicates that the number of non-spherical nodes in the bubble interface is closely related to the flow pattern in the liquid phase. It was also validated by our simulation that the flow velocity showed an exponentially decaying trend as the radial distance outward from the vortex center. Our numerical model was also used to investigate the effects of surface tension and channel size on the vortex pattern. Larger surface tension or smaller channel size showed a similar effect as the increased protrusion depth induced more vortices.
  1. Riley N, Theor. Comput. Fluid Dyn., 10, 349 (1998)
  2. Riley N, Annu. Rev. Fluid Mech., 33, 43 (2001)
  3. Ryu K, Chung SK, Cho SK, JALA J. Assoc. Lab. Autom., 15, 163 (2010)
  4. Marmottant P, Hilgenfeldt S, Proc. Natl. Acad. Sci., 101, 9523 (2004)
  5. Tovar AR, Patel MV, Lee AP, Microfluid. Nanofluidics, 10, 1269 (2011)
  6. Ahmed D, Chan CY, Lin SS, Muddana HS, Nama N, Benkovicc SJ, Huang TJ, Lab Chip, 13, 328 (2013)
  7. Ahmed D, Lu M, Nourhani A, Lammert PE, Stratton Z, Muddana HS, Crespi VH, Huang TJ, Sci. Rep., 5, 9744 (2015)
  8. Rallabandi B, Wang C, Hilgenfeldt S, Phys. Rev. Fluids, 2, 64501 (2017)
  9. Chung SK, Cho SK, Microfluid. Nanofluidics, 6, 261 (2009)
  10. Chung SK, Cho SK, J. Micromech. Microeng., 18, 125024 (2008)
  11. Wang C, Jalikop SV, Hilgenfeldt S, Appl. Phys. Lett., 99, 34101 (2011)
  12. Monjezi S, Behdani B, Palaniappan MB, Jones JD, Park J, Adv. Chem. Eng. Sci., 7, 362 (2017)
  13. Zhou R, Wang C, J. Micromech. Microeng., 25, 84005 (2015)
  14. Wang C, Jalikop SV, Hilgenfeldt S, Biomicrofluidics, 6, 12801 (2012)
  15. Patel MV, Tovar AR, Lee AP, Lab Chip, 12, 139 (2012)
  16. Xie Y, Zhao C, Zhao Y, Li S, Rufo J, Yang S, Guob F, Huang TJ, Lab Chip, 13, 1772 (2013)
  17. Zhao C, Xie Y, Mao Z, Zhao Y, Rufo J, Yang S, Guo F, Maic JD, Huang TJ, Lab Chip, 14, 384 (2014)
  18. Xie Y, Ahmed D, Lapsley MI, Lu M, Li S, Huang TJ, J. Lab. Autom., 19, 137 (2014)
  19. Patel MV, Nanayakkara IA, Simon MG, Lee AP, Lab Chip, 14, 3860 (2014)
  20. Yazdi S, Ardekani AM, Biomicrofluidics, 6, 44114 (2012)
  21. Feng J, Yuan J, Cho SK, Lab Chip, 15, 1554 (2015)
  22. Fang WF, Lee AP, Microfluid. Nanofluidics, 18, 1265 (2015)
  23. Longuet-Higgins MS, Proc. R. Soc. London. Ser. A Math. Phys. Eng. Sci., 454, 725 (1998).
  24. Spelman TA, Lauga E, J. Eng. Math., 105, 31 (2017)
  25. Doinikov AA, Cleve S, Regnault G, Mauger C, Inserra C, Phys. Rev. E, 100, 33104 (2019)
  26. Wang C, Rallabandi B, Hilgenfeldt S, Phys. Fluids, 25, 22002 (2013)
  27. Rallabandi B, Wang C, Hilgenfeldt S, J. Fluid Mech., 739, 57 (2014)
  28. Volk A, Rossi M, Kahler CJ, Hilgenfeldt S, Marin A, Lab Chip, 15, 4607 (2015)
  29. Volk A, Kahler CJ, Phys. Rev. Appl., 9, 54015 (2018)
  30. Jasak H, Jemcov A, Tukovic Z, in International Workshop on Coupled Methods in Numerical Dynamics, 1000, 1 (2007).
  31. Hoang DA, van Steijn V, Portela LM, Kreutzer MT, Kleijn CR, Comput. Fluids, 86, 28 (2013)
  32. Deshpande SS, Anumolu L, Trujillo MF, Comput. Sci. Discov., 5, 14016 (2012)
  33. Behdani B, Senter M, Mason L, Leu M, Park J, J. Manuf. Mater. Process., 4, 46 (2020)
  34. Wang C, Microbubble streaming flows for non-invasive particle manipulation and liquid mixing, USA (2014).
  35. Marin A, Rossi M, Rallabandi B, Wang C, Hilgenfeldt S, Kahler CJ, Phys. Rev. Appl., 3, 41001 (2015)
  36. Doinikov AA, Bouakaz A, J. Fluid Mech., 742, 425 (2014)
  37. Kim DY, Kim JM, Korean J. Chem. Eng., 36(6), 837 (2019)
  38. Ma P, Fu T, Zhu C, Ma Y, Korean J. Chem. Eng., 36(1), 21 (2019)
  39. Singh R, Lee HJ, Singh AK, Kim DP, Korean J. Chem. Eng., 33(8), 2253 (2016)
  40. Im DJ, Korean J. Chem. Eng., 32(6), 1001 (2015)
  41. Jeong HH, Issadore D, Lee D, Korean J. Chem. Eng., 33(6), 1757 (2016)