화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.37, No.12, 2232-2247, December, 2020
Robust siloxane/graphene oxide thin film membranes: Siloxane size adjustment for improved separation performance and flux recovery
E-mail:
Siloxane/graphene oxide (GO) nanocomposites were synthesized by hydrolysis and condensation of tetraethyl orthosilicate in the presence of GO nanosheets through a sol-gel process. The influence of synthesis parameters on the properties of the siloxane/GO samples was studied and their structural, morphological and physicochemical characteristics were compared using various techniques. Polyether sulfone-supported GO and siloxane/GO thin film membranes were prepared using a pressure-assisted self-assembly method using a dead-end cell, and their separation performance and antifouling ability were evaluated. Siloxane/GOs appeared to have higher interlayer spacing, higher zeta potential and thus higher dispersion stability in aqueous media compared to GO. This gave rise to slower and more uniform sedimentation of the siloxane/GOs during the filtration process and formation of thin film membranes possessing denser and smoother morphology. The porosity, mean pore radius, water contact angle and pure water flux of the prepared membranes were compared. The separation performance of the prepared membranes to remove methylene blue (MB) and penicillin G-procaine (PG-P) from water was evaluated as a function of used GO solution concentration. The antifouling ability of membranes was studied by determining reversible fouling (Rr), irreversible fouling (Rir) resistances and flux recovery ratio (FRR). The siloxane/GO thin film membranes containing larger siloxane network exhibited the highest rejection percentage for MB (~99%) and PG-P (~88%), which were about 40% and 90% higher than that achieved for GO thin film membranes, while the water flux remained as high as 78.1 l·m-2h-1. Furthermore, these membranes exhibited the highest chlorine resistance, stability under ultrasonication, FRR (89%) and Rr (57%) values, implying higher chemical and mechanical stability, flux recovery capacity and antifouling ability.
  1. Warsinger DM, Chakraborty S, Tow EW, Plumlee MH, et al., Prog. Polym. Sci., 81, 209 (2018)
  2. Hosseini SM, Karami F, Farahani SK, Bandehali S, Shen J, Bagheripour E, Seidypoor A, Korean J. Chem. Eng., 37(5), 866 (2020)
  3. Agboola O, Korean J. Chem. Eng., 36, 1389 (209)
  4. Bu QW, Wang B, Huang J, Deng SB, Yu G, J. Hazard. Mater., 262, 189 (2013)
  5. Tahmasebi F, Alimohammadi M, Nabizadeh R, Khoobi M, Karimian K, Zarei A, Korean J. Chem. Eng., 36(6), 894 (2019)
  6. Hegab HM, Zou LD, J. Membr. Sci., 484, 95 (2015)
  7. Srivastava SK, Pionteck J, J. Nanosci. Nanotechnol., 15, 1984 (2015)
  8. Krishnamoorthy K, Veerapandian M, Yun K, Kim SJ, Carbon, 53, 38 (2013)
  9. Jia Z, Wang Y, J. Mater. Chem. A, 3, 4405 (2015)
  10. Hung WS, Tsou CH, De Guzman M, An QF, Liu YLL, Zhang YM, Hu CC, Lee KR, Lai JY, Chem. Mater., 26, 2983 (2014)
  11. Hu M, Mi B, Environ. Sci. Technol., 47, 3715 (2013)
  12. Mahmoud KA, Mansoor B, Mansour A, Khraisheh M, Desalination, 356, 208 (2015)
  13. Nair RR, Wu HA, Jayaram PN, Grigorieva IV, Geim AK, Science, 335(6067), 442 (2012)
  14. Sun P, Zhu M, Wang K, Zhong M, Wei J, Wu D, Xu Z, Zhu H, ACS Nano, 7, 428 (2013)
  15. Li Y, Yuan S, Xia Y, Zhao W, Easton CD, Selomulya C, Zhang X, J. Membr. Sci., 601, 117900 (2020)
  16. Zhao H, Yang J, Li Z, Geng Y, Li J, Chen M, Li R, Li Q, Zhang L, J. Clean Prod., 266, 121884 (2020)
  17. Xu C, Cuai A, Xu Y, Fu X, Carbon, 62, 465 (2013)
  18. Sun P, Chen Q, Li X, Liu H, Wang K, Zhong M, Wei J, Wu D, Ma R, Sasaki T, Zhu H, NPG Asia Mater., 7, e162 (2015)
  19. Zhang MC, Guan KC, Shen J, Liu GP, Fan YQ, Jin WQ, AIChE J., 63(11), 5054 (2017)
  20. Yang HY, Wang NX, Wang L, Liu HX, An QF, Ji SL, J. Membr. Sci., 545, 158 (2018)
  21. He Y, Wang J, Zhang H, Zhang T, Zhang B, Cao S, Liu J, J. Mater. Chem. A, 2, 9548 (2014)
  22. Tian Y, Cao YW, Wang Y, Yang WL, Feng JC, Adv. Mater., 25(21), 2980 (2013)
  23. Park S, Lee KS, Bozoklu G, Cai W, Nguyen ST, Ruoff RS, ACS Nano, 2, 572 (2008)
  24. Jia ZQ, Wang Y, Shi WX, Wang JL, J. Membr. Sci., 520, 139 (2016)
  25. Wu GS, Ma LC, Liu L, Chen L, Huang YD, Thermochim. Acta, 613, 77 (2015)
  26. Li W, Liu W, Wang H, Lu W, J. Nanosci. Nanotechnol., 16, 5734 (2016)
  27. Wu HQ, Tang BB, Wu PY, J. Membr. Sci., 451, 94 (2014)
  28. Zheng S, Mi B, Environ. Sci.: Water Res. Technol., 2, 717 (2016)
  29. Xi YH, Hu JQ, Liu Z, Xie R, Ju XJ, Wang W, Chu LY, ACS Appl. Mater. Interfaces, 8, 15557 (2016)
  30. Anand A, Unnikrishnan B, Mao JY, Lin HJ, Huang CC, Desalination, 429, 119 (2018)
  31. Hummers WS, Offeman RE, J. Am. Chem. Soc., 80, 1339 (1958)
  32. Valizadeh S, Rasoulifard MH, Dorraji MSS, Appl. Surf. Sci., 319, 358 (2014)
  33. Kaniyoor A, Ramaprabhu S, AIP Adv., 2, 032183 (2012)
  34. Li JF, Xu ZL, Yang H, Feng CP, Shi JH, J. Appl. Polym. Sci., 107(6), 4100 (2008)
  35. Yin J, Zhu GC, Deng BL, Desalination, 379, 93 (2016)
  36. Sioutopoulos D, Karabelas A, Mappas V, Membranes, 9, 21 (2019)
  37. Arefi-Oskoui S, Vatanpour V, Khataee A, J. Ind. Eng. Chem., 41, 23 (2016)
  38. Shockravi A, Vatanpour V, Najjar Z, Bahadori S, Javadi A, Microporous Mesoporous Mater., 246, 24 (2017)
  39. Saraswathi MSA, Rana D, Vijayakumar P, Alwarappan S, Nagendran A, New J. Chem., 41, 14315 (2017)
  40. Kim HJ, Lim MY, Jung KH, Kim DG, Lee JC, J. Mater. Chem. A, 3, 6798 (2015)
  41. Zha J, Roggendorf H, Adv. Mater., 3, 522 (1991)
  42. Singh LP, Bhattacharyya SK, Kumar R, Mishra G, Sharma U, Singh G, Ahalawat S, Adv. Colloid Interface Sci., 214, 17 (2014)
  43. Zhang Y, Zhu YW, Lin G, Ruoff RS, Hu NP, Schaefer DW, Mark JE, Polymer, 54(14), 3605 (2013)
  44. Zhou X, Shi TJ, Appl. Surf. Sci., 259, 566 (2012)
  45. King AAK, Davies BR, Noorbehesht N, Newman P, Church TL, Harris AT, Razal JM, Minett AI, Sci. Rep., 6, 19491 (2016)
  46. Claramunt S, Varea A, Lopez-Diaz D, Velazquez MM, Cornet A, Cirera A, J. Phys. Chem. C, 119, 10123 (2015)
  47. Vollebregt S, Ishihara R, Tichelaar FD, Hou Y, Beenakker CIM, Carbon, 50, 3542 (2012)
  48. Sadezky A, Muckenhuber H, Grothe H, Niessner R, Poschl U, Carbon, 43, 1731 (2005)
  49. Diaz D, Holgado ML, Fierro JLG, Velazquez MM, J. Phys. Chem. C, 121, 20489 (2017)
  50. Li Y, Probing the response of two-dimensional crystals by optical spectroscopy, Springer International Publishing, Switzerland (2015).
  51. Nerenberg PS, Head-Gordon T, Curr. Opin. Struct. Biol., 49, 129 (2018)
  52. Fakharan Z, Naji L, Madanipour K, J. Colloid Interface Sci., 540, 272 (2019)
  53. Bourlinos AB, Gournis D, Petridis D, Szabo T, Szeri A, Dekany I, Langmuir, 19(15), 6050 (2003)
  54. Vatanpour V, Madaeni SS, Moradian R, Zinadini S, Astinchap B, J. Membr. Sci., 375(1-2), 284 (2011)
  55. Akther N, Ali SM, Phuntsho S, Shon H, Desalination, 491, 114591 (2020)
  56. Gao P, Liu ZY, Tai MH, Sun DD, Ng W, Appl. Catal. B: Environ., 138, 17 (2013)
  57. Gao Y, Hu M, Mi BX, J. Membr. Sci., 455, 349 (2014)
  58. Yan X, Tao W, Cheng S, Ma C, Zhang Y, Sun Y, Kong X, Chemosphere, 256, 127118 (2020)
  59. Lin H, Mehra N, Li Y, Zhu J, J. Membr. Sci., 593, 117401 (2020)
  60. Chen X, Qiu M, Ding H, Fu K, Fan Y, Nanoscale, 8, 5696 (2016)
  61. Zeng GY, He Y, Ye ZB, Yang X, Chen X, Ma J, Li F, Ind. Eng. Chem. Res., 56(37), 10472 (2017)
  62. Mitra S, Banerjee S, Datta A, Chakravorty D, Condensed Matter, arXiv:1207.1995 (2012).
  63. Hou JK, Bao CL, Qu SY, Hu XY, Nair S, Chen YB, Appl. Surf. Sci., 459, 185 (2018)