화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.31, No.6, 591-595, December, 2020
플래시라이트를 이용한 금속나노입자 기반 전극 및 금속유기골격체 합성 전략
Synthesis Strategy for Electrodes and Metal-Organic Frameworks based on Metal Nanoparticle using Flashlight
E-mail:
초록
Intensive pulsed light (IPL) 기술은 빛을 millisecond 단위의 짧은 시간에 상온, 상압 환경에서 대상 물질에 조사하여 에너지를 전달한다. 이렇게 단시간에 조사되는 특징을 가진 플래시라이트(flashlight)에 대한 관심의 증대로 IPL을 이용한 금속입자의 광소결 연구가 대표적으로 이루어져 왔으며, 최근에는 IPL을 다양한 물질 합성에 적용한 사례가 발표되고 있다. 본 총설 논문은 지금까지 연구되어 밝혀진 IPL을 활용한 다양한 물질 합성 전략들에 대한 것으로 IPL 기술을 이용한 물질 합성에 대한 이해를 증진시키고자 한다. 특히, 금속나노입자의 소결을 이용한 유연 전극제작 및 금속유기골격체(metal-organic framework, MOF) 합성을 다루었다. 전극제작의 핵심 요소인 전극의 산화 저항성과 전기전도도 향상을 위한 과정을 다루었고, 금속기판으로부터 금속유기골격체를 합성하는 과정을 설명하였다. 이를 향후 IPL을 이용한 전극 제작 및 물질 합성 응용에 관한 연구를 하는 연구자에게 이해하기 쉽게 설명하고자 하였다.
Intensive pulsed light (IPL) technique enables energy to be transferred to a target substance in a short time per millisecond at room temperature under an ambient atmosphere. Due to the growing interest in flashlights with excellent functionality among various technologies, light-sintering research on metal particles using IPL has been carried out representatively. Recently, examples of the application of IPL to various material synthesis have been reported. In the present article, various strategies using IPL including the manufacture of flexible electrodes and the synthesis of metal-organic frameworks were discussed. In particular, the process of improving oxidation resistance and electrical conductivity of electrodes, and also the metal-organic framework synthesis from metal surface were explained in detail. We envision that the review article can be of great help to researchers who investigate electrode manufacturing and material synthesis using IPL.
  1. Yim C, Kockerbeck ZA, Jo SB, Park SS, ACS Appl. Mater. Interfaces, 9, 37160 (2017)
  2. Park SH, Chung WH, Kim HS, J. Mater. Process Technol., 214, 2730 (2014)
  3. Kim HS, Dhage SR, Shim DE, Hahn HT, Appl. Phys., 97, 791 (2009)
  4. Han WS, Hong JM, Kim HS, Song YW, Nanotechnology, 22, 395705 (2011)
  5. Singh M, Haverinen HM, Dhagat P, Jabbour GE, Adv. Mater., 22(6), 673 (2010)
  6. Song J, Zeng H, Angew. Chem.-Int. Edit., 54, 9760 (2015)
  7. Xu X, Luo X, Zhuang H, Li W, Zhang B, Mater. Lett., 57, 3987 (2003)
  8. Yabuki A, Tanaka S, Mater. Res. Bull., 46(12), 2323 (2011)
  9. Yim C, Sandwell A, Park SS, ACS Appl. Mater. Interfaces, 8, 22369 (2016)
  10. Grouchko M, Kamyshny A, Magdassi S, J. Mater. Chem., 19, 3057 (2009)
  11. Song J, Li J, Xu J, Zeng H, Nano Lett., 14, 6298 (2014)
  12. Hwang HJ, Joo SJ, Kim HS, ACS Appl. Mater. Interfaces, 7, 25413 (2015)
  13. Kim I, Kim Y, Woo K, Ryu EH, Yon KY, Cao G, Moon J, RSC Adv., 3, 15169 (2013)
  14. Yim C, Jeon S, RSC Adv., 5, 67454 (2015)
  15. Baumann TF, Lawrence Livermore National Laboratory, TR-430112, Doi:10.2172/1012427 (2011).
  16. Britt D, Tranchemontagne D, Yaghi OM, Proc. Nat. Acad. Sci., 105, 11623 (2008)
  17. Abuzalat O, Wong D, Elsayed M, Park S, Kim S, Ultrason. Sonochem, 45, 180 (2018)
  18. Mueller U, Schubert M, Teich F, Puetter H, Schierle-Arndt K, Pastre J, J. Mater. Chem., 16, 626 (2005)
  19. Stock N, Biswas S, Chem. Rev., 112(2), 933 (2012)
  20. Furukawa H, Ko N, Go YB, Aratani N, Choi SB, Choi E, Yazaydin AO, Snurr RQ, O'Keeffe M, Kim J, Yaghi OM, Science, 329(5990), 424 (2010)
  21. Shekhah C, Wang H, Kowarik S, Schreiber F, Paulus M, Tolan M, Sternemann C, Evers F, Zacher D, Fischer RA, Woll C, J. Am. Chem. Soc., 129(49), 15118 (2007)
  22. Li JP, Cheng SJ, Zhao Q, Long PP, Dong JX, Int. J. Hydrog. Energy, 34(3), 1377 (2009)
  23. Yim C, Abuzalat O, Elsayed M, Park S, Kim S, Cryst. Growth Des., 18, 6946 (2018)
  24. Betard A, Fischer RA, Chem. Rev., 112(2), 1055 (2012)
  25. Skorupa W, Gebel T, Yankov RA, Paul S, Lerch W, Downey DF, Arevalo EA, J. Electrochem. Soc., 152(6), G436 (2005)
  26. Reichel D, Ripple Pyrometry for Flash Lamp Annealers, 1st ed., 103-105, Springer, Germany (2016).
  27. Katayama S, Kawahito Y, Scr. Mater., 59, 1247 (2008)
  28. Yim C, Greco K, Sandwell A, Park SS, Int. J. Pr. Eng. Man-gt., 4, 155 (2017)
  29. Lim HS, Kim SJ, Jang HW, Lim JA, J. Mater. Chem. C, 5, 7142 (2017)
  30. Lopez-Delgado A, Cano E, Bastidas JM, Lopez FA, J. Mater. Sci., 36(21), 5203 (2001)
  31. Bastidas DM, La Iglesia VM, Cano E, Fajardo S, Bastidas JM, J. Electrochem. Soc., 155(12), C578 (2008)
  32. Kang D, Kwon JY, Cho H, Sim JH, Hwang HS, Kim CS, Kim YJ, Ruoff RS, Shin HS, ACS Nano., 6, 7763 (2012)
  33. Shtein M, Pri-Bar I, Varenik M, Regev O, Anal. Chem., 87, 4076 (2015)
  34. Ahrenholtz SR, Epley CC, Morris AJ, J. Am. Chem. Soc., 136(6), 2464 (2014)
  35. Zhang X, Liu Y, Li S, Kong L, Liu H, Li Y, Han W, Yeung KL, Zhu W, Yang W, Qiu J, Chem. Mater., 26, 1975 (2014)
  36. Yim C, Lee M, Kim W, Lee S, Kim GH, Kim KT, Jeon S, Chem. Commun., 51, 6168 (2015)
  37. Biesinger MC, Lau LWM, Gerson AR, Smart RSC, Appl. Surf. Sci., 257(3), 887 (2010)