화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.31, No.6, 603-606, December, 2020
1-Benzyl-3-butylimidazolium Hydroxide 이온성액체 합성 및 전해질 특성 조사
Synthesis and Electrolyte Characterization of 1-Benzyl-3-butylimidazolium Hydroxide Ionic Liquid
E-mail:
초록
본 논문에서는 수산화기를 음이온으로 이미다졸리움, 즉 1-benzyl-3-butylimidazolium [BzBIM]을 양이온으로 구성한 친수성의 알칼라인 이온성 액체 전해질을 합성하였다. 합성한 이온성 액체의 전기화학적, 물리적 및 구조적 특성을 순환전압전류법, 이온전도도, 점도, 열중량분석기, 시차 주사 열량 측정법, FT-IR과 1H-NMR을 이용하여 측정하였다. 합성된 이온성 액체는 0.1 M KCl 전해질과 유사한 높은 이온전도도와 낮은 점도를 나타내었으며, 또한 약 4.4 V 이상의 전위창을 나타내었다. 따라서 상기 이온성 액체는 대체 전해질로 다양한 에너지 및 환경 응용분야에 활용될 수 있을 것으로 전망된다.
A hydrophilic alkaline room temperature ionic liquid electrolyte (RT-IL) carrying hydroxide ion as an anion and 1-benzyl- 3-butylimidazolium as a cation was synthesized. Electrochemical, physical and structural properties of the synthesized RT-IL were characterized using cyclic voltammetry, ionic conductivity, viscosity, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), FT-IR, and 1H-NMR measurements. High ionic conductivity and low viscosity characteristics comparable to 0.1 M KCl electrolyte solution were achieved for the RT-IL in addition to a wide electrochemical potential window of about 4.4 V. The results indicate that the RT-IL is promising for future applications as an alternative electrolyte to energy and environmental research fields.
  1. Weingarth D, Czekaj I, Fei Z, Schmitz AF, Dyson PJ, Wokaun A, Kotz R, J. Electrochem. Soc., 7, H611 (2012)
  2. Bidault F, Brett DJL, Middleton PH, Brandon NP, J. Power Sources, 187(1), 39 (2009)
  3. Cadena C, Anthony JL, Shah JK, Morrow TI, Brennecke JF, Maginn EJ, J. Am. Chem. Soc., 126(16), 5300 (2004)
  4. Bates ED, Mayton RD, Ntai I, Davis JH, J. Am. Chem. Soc., 124(6), 926 (2002)
  5. Kim IJ, Kim KS, Lee JH, Appl. Chem. Eng., 31(3), 305 (2020)
  6. Li Q, Li Q, Li G, Zhao W, Zhao X, Mu T, Sci. China Chem., 59, 571 (2016)
  7. Lee H, Lee JS, Kim HS, Appl. Chem. Eng., 21(2), 129 (2010)
  8. Chen C, Phys. Chem. Liq., 48, 298 (2010)
  9. Galinski M, Lewandowski A, Stepniak I, Electrochim. Acta, 51, 5 (2006)
  10. Kim CS, Yoo KS, Appl. Chem. Eng., 25(3), 249 (2014)
  11. Nakagawa H, Fujino Y, Kozono S, Katayama Y, Nukuda T, Sakaebe H, Matsumoto H, Tatsumi K, J. Power Sources, 174(2), 1021 (2007)
  12. Kim CS, Ahn BS, Tae H, Jeon SH, Yoo KS, Appl. Chem. Eng., 23(5), 510 (2012)
  13. Wang C, Luo H, Luo X, Li H, Dai S, Green Chem., 12, 2019 (2010)
  14. Han S, Luo M, Zhou XL, He Z, Xiong LP, Ind. Eng. Chem. Res., 51(15), 5433 (2012)
  15. Ngo HL, Le Compte K, Hargens L, McEwen AB, Thermochim. Acta, 357, 97 (2000)
  16. Jaganathan JR, Sivapragasm M, Wilfred CD, J. Chem. Eng. Process Technol., 07, 1 (2016)
  17. Tshemese Z, Masikana SC, Mlowe S, Revaprasadu N, Recent Advances in Ionic Liquids, 71-88 (2018).
  18. Wu YC, Koch WF, Pratt KW, J. Res. Natl. Inst. Stand. Technol., 96, 191 (1991)
  19. Kestin J, Shankland IR, Paul R, Int. J. Thermophys., 2, 301 (1981)
  20. Jing LW, Xing HB, Fu ZZ, Ting TR, Ling ZJ, Chin. J. Chem., 25, 1349 (2007)