Applied Chemistry for Engineering, Vol.31, No.6, 603-606, December, 2020
1-Benzyl-3-butylimidazolium Hydroxide 이온성액체 합성 및 전해질 특성 조사
Synthesis and Electrolyte Characterization of 1-Benzyl-3-butylimidazolium Hydroxide Ionic Liquid
E-mail:
초록
본 논문에서는 수산화기를 음이온으로 이미다졸리움, 즉 1-benzyl-3-butylimidazolium [BzBIM]을 양이온으로 구성한 친수성의 알칼라인 이온성 액체 전해질을 합성하였다. 합성한 이온성 액체의 전기화학적, 물리적 및 구조적 특성을 순환전압전류법, 이온전도도, 점도, 열중량분석기, 시차 주사 열량 측정법, FT-IR과 1H-NMR을 이용하여 측정하였다. 합성된 이온성 액체는 0.1 M KCl 전해질과 유사한 높은 이온전도도와 낮은 점도를 나타내었으며, 또한 약 4.4 V 이상의 전위창을 나타내었다. 따라서 상기 이온성 액체는 대체 전해질로 다양한 에너지 및 환경 응용분야에 활용될 수 있을 것으로 전망된다.
A hydrophilic alkaline room temperature ionic liquid electrolyte (RT-IL) carrying hydroxide ion as an anion and 1-benzyl- 3-butylimidazolium as a cation was synthesized. Electrochemical, physical and structural properties of the synthesized RT-IL were characterized using cyclic voltammetry, ionic conductivity, viscosity, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), FT-IR, and 1H-NMR measurements. High ionic conductivity and low viscosity characteristics comparable to 0.1 M KCl electrolyte solution were achieved for the RT-IL in addition to a wide electrochemical potential window of about 4.4 V. The results indicate that the RT-IL is promising for future applications as an alternative electrolyte to energy and environmental research fields.
Keywords:Alkaline ionic liquid electrolytes;Protic;1-Benzyl-3-butylimidazolium hydroxide;Energy applications;Potential window
- Weingarth D, Czekaj I, Fei Z, Schmitz AF, Dyson PJ, Wokaun A, Kotz R, J. Electrochem. Soc., 7, H611 (2012)
- Bidault F, Brett DJL, Middleton PH, Brandon NP, J. Power Sources, 187(1), 39 (2009)
- Cadena C, Anthony JL, Shah JK, Morrow TI, Brennecke JF, Maginn EJ, J. Am. Chem. Soc., 126(16), 5300 (2004)
- Bates ED, Mayton RD, Ntai I, Davis JH, J. Am. Chem. Soc., 124(6), 926 (2002)
- Kim IJ, Kim KS, Lee JH, Appl. Chem. Eng., 31(3), 305 (2020)
- Li Q, Li Q, Li G, Zhao W, Zhao X, Mu T, Sci. China Chem., 59, 571 (2016)
- Lee H, Lee JS, Kim HS, Appl. Chem. Eng., 21(2), 129 (2010)
- Chen C, Phys. Chem. Liq., 48, 298 (2010)
- Galinski M, Lewandowski A, Stepniak I, Electrochim. Acta, 51, 5 (2006)
- Kim CS, Yoo KS, Appl. Chem. Eng., 25(3), 249 (2014)
- Nakagawa H, Fujino Y, Kozono S, Katayama Y, Nukuda T, Sakaebe H, Matsumoto H, Tatsumi K, J. Power Sources, 174(2), 1021 (2007)
- Kim CS, Ahn BS, Tae H, Jeon SH, Yoo KS, Appl. Chem. Eng., 23(5), 510 (2012)
- Wang C, Luo H, Luo X, Li H, Dai S, Green Chem., 12, 2019 (2010)
- Han S, Luo M, Zhou XL, He Z, Xiong LP, Ind. Eng. Chem. Res., 51(15), 5433 (2012)
- Ngo HL, Le Compte K, Hargens L, McEwen AB, Thermochim. Acta, 357, 97 (2000)
- Jaganathan JR, Sivapragasm M, Wilfred CD, J. Chem. Eng. Process Technol., 07, 1 (2016)
- Tshemese Z, Masikana SC, Mlowe S, Revaprasadu N, Recent Advances in Ionic Liquids, 71-88 (2018).
- Wu YC, Koch WF, Pratt KW, J. Res. Natl. Inst. Stand. Technol., 96, 191 (1991)
- Kestin J, Shankland IR, Paul R, Int. J. Thermophys., 2, 301 (1981)
- Jing LW, Xing HB, Fu ZZ, Ting TR, Ling ZJ, Chin. J. Chem., 25, 1349 (2007)