화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.31, No.6, 607-611, December, 2020
그래파이트로부터 직접 제조한 Au/TiO2/그래핀 복합체와 이를 이용한 염료의 광분해에 관한 연구
Direct Synthesis of Au/TiO2/graphene Composites and Their Application for Degradation of Various Organic Dyes
E-mail:
초록
본 연구에서는 그래파이트로부터 직접적으로 그래핀 복합체를 합성하는 방법을 이용하여 Au/TiO2/그래핀 복합체를 합성하였다. 계면활성제를 이용하여 박리된 그래파이트로부터 합성된 그래핀 복합체에서 TiO2는 아주 얇은 시트 형태로 그래핀 표면에 분포되어있고 10 nm 미만의 Au 나노입자들이 TiO2 시트 표면 위에 골고루 분포되어 있다. 이렇게 만들어진 그래핀 복합체를 이용하여 다양한 염료의 광분해 반응에 적용하였다. 이들 중 가장 광분해 활성에 뛰어난 것으로 나타난 염료는 메틸렌블루(91.6%)였으며 로다민 B(31.0%)에서는 광분해 특성이 뛰어나지 않는 것으로 나타났다.
In this research, we synthesized Au/TiO2/graphene composites using ionic surfactants for the exfoliation of graphite layers, directly. In the graphene composite, TiO2 with thin nanosheet shapes was distributed on the graphene surface and Au nanoparticles with less than 10 nm sizes were evenly distributed on the surface of the TiO2 nanosheets. The Au/TiO2/graphene composite was then applied to the photodegradation of various dyes such as methylene blue, methylene orange and rhodamine 6G, and B. Among them, the methylene blue showed the most excellent photodegradation activity (91.6%) while the rhodamine B exhibited 31.0%.
  1. Yang C, Dong W, Cui G, Zhao Y, Shi X, Xia X, Tang B, Wang W, Sci. Rep., 7, 3973 (2017)
  2. Eskandarloo H, Kierulf A, Abbaspourrad A, Nanoscale, 9, 13850 (2017)
  3. Wang R, Shi K, Huang D, Zhang J, An S, Sci. Rep., 9, 18744 (2019)
  4. Khan SA, Arshad Z, Shahid S, Arshad I, Rizwan K, Sher M, Fatinn U, Compos. Part B, 175, 107120 (2019)
  5. Khataee AR, Kasiri MB, J. Mol. Catal. A-Chem., 328(1-2), 8 (2010)
  6. Lim S, Nguyen-Phan TD, Shin EW, Appl. Chem. Eng., 22(1), 61 (2011)
  7. Hwang MJ, Nguyen TB, Ryu KS, Appl. Chem. Eng., 23(2), 148 (2012)
  8. Biswas R, Mete S, Mandal M, Banerjee B, Singh H, Ahmed I, Haldar KK, J. Phys. Chem. C, 124, 3373 (2020)
  9. Gilmour CR, Ray A, Zhu J, Ray MB, Ind. Eng. Chem. Res., 52(50), 17800 (2013)
  10. Jeong GH, Sasikala SP, Yun T, Lee GY, Lee WJ, Kim SO, Adv. Mater., 32, 190700 (2020)
  11. Perera SD, Mariano RG, Vu K, Nour N, Seitz O, Chabal Y, Balkus KJ, ACS Catal., 2, 949 (2012)
  12. Zhang Y, Tang Z, Fu X, Xu Y, ACS Nano, 12, 7303 (2010)
  13. Jeong GH, Kim SH, Kim M, Choi D, Lee JH, Kim JH, Kim SW, Chem. Commun., 47, 12236 (2011)
  14. Datcu A, Duta L, Perez del Pino A, Logofatu C, Luculescu C, Duta A, Perniu D, Gyorgy E, RSC Adv., 5, 49771 (2015)
  15. Wu JB, Lin ML, Cong X, Liu HN, Tan PH, Chem. Soc. Rev., 47, 1822 (2018)
  16. Benjwal P, Kumar M, Chamoli P, Kar KK, RSC Adv., 5, 73249 (2015)
  17. Misra S, Li L, Jian J, Huang J, Wang X, Zemlyanov D, Jang JW, Ribeiro FH, Wang H, ACS Appl. Mater. Interfaces, 10, 32895 (2018)
  18. Sonawane RS, Dongare MK, J. Mol. Catal. A-Chem., 243(1), 68 (2006)
  19. Okazaki M, Suganami Y, Hirayama N, Nakata H, Oshikiri T, Yokoi T, Misawa H, Maeda K, ACS Appl. Energy Mater., 3, 5142 (2020)
  20. Zhang Z, Zhang L, Hedhili MN, Zhang H, Wang P, Nano Lett., 13, 14 (2013)
  21. Harris J, Silk R, Smith M, Dong Y, Chen WT, Waterhouse GIN, ACS Omega, 5, 30 (2020)
  22. Ghasemi S, Hashemian SJ, Alamolhoda AA, Gocheva I, Setayesh SR, Mater. Res. Bull., 87, 40 (2017)