화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.31, No.6, 646-652, December, 2020
V/Sb/TiO2 촉매에서 Sb 소성온도에 따른 NH3-SCR 효율 영향 연구
Study on the Effect of NH3-Selective Catalytic Reduction Efficiency according to Sb Calcination Temperature in V/Sb/TiO2 Catalyst
E-mail:
초록
본 연구는 200~500 ℃ 영역에서 NOx를 제어하기 위한 NH3-SCR 실험을 수행하였다. V/Sb/TiO2 조성의 촉매에서 Sb/TiO2 의 소성온도를 다르게 하여 반응활성 실험을 진행하였다. 그 결과 Sb/TiO2의 소성온도가 600 ℃일 때, 가장 효율이 우수하였으며, 특히 반응온도 250 ℃에서 NOx 전환율이 80% 가까이 나오는 것을 확인할 수 있었다. 이와 같이 다른 소성온도로 제조하였을 때 활성증진의 원인을 도출하기 위하여 H2-TPR, XRD, BET, Raman, XPS 분석을 진행하였다. 그 결과 활성이 우수하였던 Sb/TiO2의 소성온도를 600 ℃로 제조하였을 때, VSbO4가 생성되는 것을 확인하였으며, 이 종이 생성됨으로써 V의 비 화학양론종이 증가하여 V/Sb/TiO2의 NOx 전환율이 우수한 것으로 판단된다.
In this study, an NH3-selective catalytic reduction (SCR) experiment was performed to control NOx in the temperature range of 200~500 ℃. The reaction activity experiment was conducted by varying the firing temperature of Sb/TiO2 when using V/Sb/TiO2 composite as a catalyst. As a result, when the sintering temperature of Sb/TiO2 was 600 ℃, the efficiency was the best, and it was confirmed that the NOx conversion rate was close to 80% at the reaction temperature of 250 ℃. H2-temperature programmed reduction (TPR), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS) analyses were employed to derive the cause of the activity enhancement when prepared at different firing temperatures as described above. As a result, when the sintering temperature of Sb/TiO2, which showed an excellent activity, was prepared at 600 ℃, it was confirmed that VSbO4 was generated. This indicates that the non-stoichiometric species of V increased, resulting in the excellent NOx conversion rate of V/Sb/TiO2.
  1. Rahkamaa-Tolonen K, Maunula T, Lomma M, Huuhtanen M, Keiski RL, Catal. Today, 100(3-4), 217 (2005)
  2. Chang H, Jong MT, Wang C, Qu R, Du Y, Li J, Hao J, Environ. Sci. Technol., 47(20), 11692 (2013)
  3. Bosch H, Janssen F, Catal. Today, 2(4), 369 (1990)
  4. Forzatti P, Catal. Today, 62(1), 51 (2000)
  5. Centeno MA, Carrizosa I, Odriozola JA, Appl. Catal. B: Environ., 29(4), 307 (2001)
  6. Bond GC, Tahir SF, Catal. Today, 10, 393 (1990)
  7. Wang CZ, Yang SJ, Chang HZ, Peng Y, Li JH, Chem. Eng. J., 225, 520 (2013)
  8. Yue P, Kezhi L, Junhua L, Appl. Catal. B: Environ., 140-141, 483 (2013)
  9. Zhiming L, Junzhi Z, Shaoxuan Z, Lingling M, Seong W, Catal. Commun., 46, 90 (2014)
  10. Choo ST, Yim SD, Nam IS, Ham SW, Lee JB, Appl. Catal. B: Environ., 44(3), 237 (2003)
  11. Kobayashi M, Hagi M, Appl. Catal. B: Environ., 63(1-2), 104 (2006)
  12. Amiridis MD, Wachs IE, Deo G, Jehng JM, Kim DS, J. Catal., 161(1), 247 (1996)
  13. Youn S, Song I, Kim DH, J. Nanosci. Nanotechnol., 16, 4350 (2016)
  14. Lee KJ, Kumar PA, Maqbool MS, Rao KN, Song KH, Ha HP, Appl. Catal. B: Environ., 142-143, 705 (2013)
  15. Phil HH, Reddy MP, Kumar PA, Ju LK, Hyo JS, Appl. Catal. B: Environ., 78(3-4), 301 (2008)
  16. Yang NZ, Guo RT, Pan WG, Chen QL, Wang QS, Lu CZ, Fuel, 169, 87 (2016)
  17. Shin JH, Hong SC, Appl. Chem. Eng., 31(2), 200 (2020)
  18. Barbaro A, Larrondo S, Duhalde S, Amadeo N, Appl. Catal. A: Gen., 193(1-2), 277 (2000)
  19. Larrondo S, Irigoyen B, Baronetti G, Amadeo N, Appl. Catal. A: Gen., 250(2), 279 (2003)
  20. Kim DH, Kwon DW, Hong SC, Appl. Surf. Sci., 538, 148088 (2021)
  21. Beale AM, Gonzalez IL, Maunula T, Palgrave RG, Catal. Struct. React., 1, 25 (2015)
  22. Topsoe NY, Dumesic JA, Topsoe H, J. Catal., 151(1), 241 (1995)
  23. Choung JW, Nam IS, Ham SW, Catal. Today, 111(3-4), 242 (2006)
  24. Vuurman MA, Wachs IE, Hirt AM, J. Phys. Chem., 95, 9928 (1991)
  25. Montilla F, Morallon E, De Battisti A, Barison S, Daolio S, Vazquez JL, J. Phys. Chem. B, 108(41), 15976 (2004)
  26. Krishnakumar T, Jayaprakash R, Pinna N, Phani AR, Passacantando M, Santucci S, J. Phys. Chem. Solids, 70, 993 (2009)
  27. Choi SH, Cho SP, Lee JY, Hong SH, Hong SC, Hong SI, J. Mol. Catal. A-Chem., 304(1-2), 166 (2009)
  28. Topsoe NY, Dumesic JA, Topsoe H, J. Catal., 151(1), 241 (1995)