Applied Chemistry for Engineering, Vol.31, No.6, 668-673, December, 2020
폴리에틸렌 테레프탈레이트의 해중합을 위한 초음파 박리법 기반의 코발트 수산화물 나노시트의 제조
Synthesis of Cobalt Hydroxide Nanosheets based on Sonication-induced Exfoliation for Depolymerization of Polyethylene Terephthalate
E-mail:,
초록
본 논문에서는 수산화코발트[Co(OH)2] 층간 소재를 초음파(sonication) 액상 박리 공정을 사용하여 얇은 2차원 나노시트(nanosheet)로 박리하였다. 상기의 Co(OH)2 촉매는 27.5 m2 g-1의 넓은 비표면적을 갖는 한 장의 육각 나노시트로 박리 되었다. 또한, 특성 분석 및 PET 해중합(depolymerization) 반응의 촉매로서 사용되어 고활성을 증명하였다. 해당 촉매를 사용한 PET 해중합 반응은 200 ℃에서 30 min 이내에 100%의 높은 PET전환율과 100%의 높은 BHET 수율을 보여주었다. 박리된 Co(OH)2의 재사용성을 확인하기 위해 반응 후 필터를 사용해 촉매를 회수하여 PET 해중합 반응을 진행하였다. 총 4번의 재사용 동안 100%의 PET 전환율과 100%의 BHET 수율을 보여주어 촉매의 우수한 안정성을 증명하였다.
In this work, ultrathin and two-dimensional (2D) cobalt hydroxide [Co(OH)2] nanosheets were synthesized by a sonication assisted liquid-phase exfoliation of bulk Co(OH)2. The resulting exfoliated Co(OH)2 is a hexagonal mono-layered nanosheet with a high specific surface area of 27.5 m2 g-1. The depolymerization of polyethylene terephthalate (PET) based on glycolysis reaction was also performed using an exfoliated Co(OH)2 catalyst. Excellent catalytic reaction performances were demonstrated; a high PET conversion and bis(2-hydroxyethyl) terephthalate (BHET) yield of both 100% using the nanosheet catalyst were achieved within a reaction time and temperature of 30 min and 200 ℃, respectively. The long-term stability of exfoliated Co(OH)2 catalysts was also demonstrated by recyclability tests of the catalyzed glycolysis reaction of PET over four cycles, showing both 100% of high PET conversion and BHET yield.
- Plastic Insight, https://www.plasticsinsight.com/resin-intelligence/resin-prices/polyethylene-terephthalate/.
- Rahimi A, Garcia JM, Nat. Rev. Chem., 1, 46 (2017)
- Zhang XY, Fevre M, Jones GO, Waymouth RM, Chem. Rev., 118(2), 839 (2018)
- Webb HK, Arnott J, Crawford RJ, Ivanova EP, Polymers, 5, 1 (2013)
- Tournier V, Topham CM, Gilles A, David B, Folgoas C, Moya-Leclair E, Kamionka E, Desrousseaux ML, Texier H, Gavalda S, Cot M, Gu?mard E, Dalibey M, Nomme J, Cioci G, Barbe S, Chateau M, Andr? I, Duquesne S, Marty A, Nature, 580(7802), 216 (2020)
- Raheem AB, Noor ZZ, Hassan A, Hamid MKA, Samsudin SA, Sabeen AH, J. Clean Prod., 225, 1052 (2019)
- Awaja F, Pavel D, Eur. Poly. J., 41, 1453 (2005)
- Carta D, Cao G, Angeli CD, Environ. Sci. Pollut. Res., 10, 390 (2003)
- Khoonkari M, Haghighi AH, Sefidbakht Y, Shekoohi K, Ghaderian A, Int. J. Polym. Sci., 11, 1 (2005)
- Chen CH, Chen CY, Lo YW, Mao CF, Liao WT, J. Appl. Polym. Sci., 5, 943 (2001)
- Lima GR, Monteiro WF, Ligabue R, Santana RMC, Mater. Res., 20, 588 (2017)
- Imran M. Kim DH, Al-Masry WA, Mahmood A, Hassa A, Haider S, Ramay SM, Polym. Degrad. Stabil., 1, 904 (2013)
- Ghaemy M, Mossaddegh K, Polym. Degrad. Stabil., 90, 570 (2005)
- Troev K, Grancharov G, Tsevi R, Gitsov I, J. Appl. Polym. Sci., 90, 1148 (2013)
- Zhu ML, Li ZX, Wang Q, Zhou XY, Lu XM, Ind. Eng. Chem. Res., 51(36), 11659 (2012)
- Thomas JM, Raja R, Top. Catal., 40, 1 (2006)
- Hwang H, Kim B, Woo D, Han M, Korean Chem. Eng. Res., 47(6), 683 (2009)
- Nabid MR, Bide Y, Fereidouni N, Etemadi B, Polym. Degrad. Stabil., 144, 434 (2017)
- Ugduler S, Geem KV, Denolf R, Roosen M, Mys N, Ragaert K, Meester SD, Green Chem., 22, 5376 (2020)
- Jash P, Srivastava P, Paul A, Chem. Commun., 55, 2230 (2019)
- Surendranath Y, Kanan MW, Nocera DG, J. Am. Chem. Soc., 132(46), 16501 (2010)
- Cui H, Zhao Y, Ren W, Wang M, Liu Y, J. Alloy. Compd., 562, 33 (2013)
- Xu Y, Cao H, Xue Y, Li B, Cai W, Nanomaterials, 8, 942 (2018)
- Amiri A, Naraghi M, Ahmadi G, Soleymaniha M, Shanbedi M, Flatchem, 8, 40 (2018)
- Yang A, Wang D, Wanga X, Zhang D, Koratkar N, Rong M, Nano Today, 20, 12 (2018)
- Zhang X, Coleman AC, Katsonis N, Browne WR, van Wees BJ, Fering BL, Chem. Commun., 46, 7539 (2010)
- Sampanthar JT, Zeng HC, J. Am. Chem. Soc., 124(23), 6668 (2002)
- Zhou T, Cao Z, Wang H, Gao Z, Li L, Mab H, Zhao Y, RSC Adv., 7, 22818 (2017)