Korean Journal of Materials Research, Vol.30, No.11, 601-608, November, 2020
Facile Synthesis of In2S3 Modified Ag3PO4 Nanocomposites with Improved Photoelectrochemical Properties and Stabilities
E-mail:,
In this work, Ag3PO4/In2S3 nanocomposites with low loading of In2S3 (5-15 wt %) are fabricated by two step chemical precipitation approach. The microstructure, composition and improved photoelectrochemical properties of the asprepared composites are studied by X-ray diffraction pattern (XRD), field emission scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), photocurrent density, EIS and amperometric i-t curve analysis. It is found that most of In2S3 nanoparticles are deposited on the surfaces of Ag3PO4. The as-prepared Ag3PO4/In2S3 composite (10 wt%) is selected and investigated by SEM and TEM, which exhibits special morphology consisting of lager size substrate (Ag3PO4), particles and some nanosheets (In2S3). The introduction of In2S3 is effective at improving the charge separation and transfer efficiency of Ag3PO4/In2S3, resulting in an enhancement of photoelectric behavior. The origin of the enhanced photoelectrochemical activity of the In2S3-modified Ag3PO4 may be due to the improved charge separation, photocurrent stability and oriented electrons transport pathways in environment and energy applications.
- Fan ZY, Razavi H, Do JW, Moriwaki A, Ergen O, Chueh YL, Leu PW, Ho JC, Takahashi T, Reichertz LA, Neale S, Yu K, Wu M, Ager JW, Javey A, Nat. Mater., 8(8), 648 (2009)
- Chen JS, Ren JW, Shalom M, Fellinger T, Antonietti M, ACS Appl. Mater. Interfaces, 8, 5509 (2016)
- Shi XJ, Choi IY, Zhang K, Kwon J, Kim DY, Lee JK, Oh SH, Kim JK, Park JH, Nat. Commun., 5, 4775 (2014)
- Xu M, Da PM, Wu HY, Zhao DY, Zheng GF, Nano Lett., 12, 1503 (2012)
- Ma XG, Lu B, Li D, Shi R, Pan CS, Zhu YF, J. Phys. Chem. C, 4680, 2011
- Martin DJ, Umezawa N, Chen XW, Ye JH, Tang JW, Energ. Environ. Sci., 6, 3380 (2013)
- Tennakone K, Jayatissa AH, Wijeratne W, J. Chem. Soc., Chem. Commun., 7, 496 (1988).
- Wang H, Bai Y, Yang J, Lang X, Li J, Guo L, Chem. Eur. J., 18, 5524 (2012)
- Bi Y, Ouyang S, Cao J, Ye J, Phys. Chem. Chem. Phys., 13, 10071 (2011)
- Yang ZM, Huang GF, Huang WQ, Wei JM, Yan XG, Liu YY, Jiao C, Wan Z, Pan A, J. Mater. Chem. A, 2, 1750 (2014)
- Shao R, Zeng X, Cao Z, Dong H, Wang L, Wang F, Liu J, Li Z, Liang Q, RSC Adv., 5, 102101 (2015)
- Xiang QJ, Lang D, Shen TT, Liu F, Appl. Catal. B: Environ., 162, 196 (2015)
- Yan TJ, Tian J, Guan WF, Qiao Z, Li WJ, You JM, Huang BB, Appl. Catal. B: Environ., 202, 84 (2017)
- Rajeshmon VG, Poornima N, Kartha CS, Vijayakumar KP, J. Alloy. Compd., 553, 239 (2013)
- Chen BK, Chang S, Li DY, Chen LL, Wang YT, Chen T, Chem. Mater., 27, 5949 (2015)
- An XQ, Yu JC, Wang F, Li CH, Li YC, Appl. Catal. B: Environ., 129, 80 (2013)
- Ehsan MA, Peiris TA, Wijayantha KG, Olmstead MM, Arifin Z, Mazhar M, Dalton. Trans., 42, 10919 (2013)
- Zhang LN, Zhang W, Yang HB, Fu WY, Li MH, Zhao H, Ma JW, Appl. Surf. Sci., 258(22), 9018 (2012)
- Tian Y, Wang L, Tang HQ, Zhou WW, J. Mater. Chem. A, 3, 11294 (2015)
- Chen LY, Zhang ZD, Wang WZ, J. Phys. Chem. C, 112, 4117 (2008)
- Li Y, Wang J, Tian X, Ma L, Dai C, Yang C, Zhou Z, Nanoscale, 8, 1676 (2016)
- Bi YP, Quyang SX, Cao JY, Ye JH, Phys. Chem. Chem. Phys., 13, 10071 (2011)
- Gu Y, Xu ZD, Guo L, Wan YQ, CrystEngComm, 16, 10997 (2014)
- Cai L, Jiang H, Wang LX, Appl. Surf. Sci., 420, 43 (2017)
- Ma Y, Wang ZH, Jia YL, Wang LN, Yang M, Qi YX, Bi YP, Carbon, 114, 591 (2017)
- Chai YY, Wang L, Ren J, Dai WL, Appl. Surf. Sci., 324, 212 (2015)
- Wan J, Sun L, Fan J, Liu EZ, Hu X, Tang CN, Yin YC, Appl. Surf. Sci., 355, 615 (2015)
- Katsumata H, Sakai T, Suzuki T, Kaneco S, Ind. Eng. Chem. Res., 53(19), 8018 (2014)
- Liu Y, Xu H, Qian Y, Cryst. Growth Des., 6, 1304 (2006)