화학공학소재연구정보센터
Macromolecular Research, Vol.28, No.12, 1111-1115, November, 2020
Impact of Chalcogenophenes on Donor-Acceptor Copolymers for Bulk Heterojunction Solar Cells
E-mail:,
Three new selenophene-based conjugated copolymers having different ratios of the monomeric units were designed, synthesized and thoroughly characterized. The introduction of an electron-poor and surfaced building moiety like selenathiazole was highly efficient in tuning the bandgap and polymer properties. The chalcogenophene-based medium-bandgap polymers demonstrated low-lying HOMO energy levels (∼5.87 eV), which is benign for use in multi-junction polymer solar cell applications. The representative polymers with heavy atoms revealed the change in electronegativity and atomic size that highly affected the molecular property, its topological features, and photovoltaic properties in polymer solar cells. The selenium-substituted (0.5:0.5) polymer donors showed power conversion efficiencies above 3% when combined with [6,6]-phenyl-C71-butyric acid methyl ester (PC70BM) acceptors in a quintessential bulk-heterojunction solar cell.
  1. Song J, Li C, Zhu L, Guo J, Xu j, Zhang X, Weng K, Zhang K, Min J, Hao Zhang Y, Liu F, Sun Y, Adv. Mater., 31, 190564 (2018)
  2. Espinosa N, Hosel M, Angmo D, Krebs FC, Energy Environ. Sci., 5, 5117 (2012)
  3. Sirringhaus H, Adv. Mater., 26(9), 1319 (2014)
  4. Berny S, Blouin N, Distler A, Egelhaaf HJ, Krompiec M, Lohr A, et al., Adv. Sci., 3, 150034 (2016)
  5. Zhou HX, Yang LQ, You W, Macromolecules, 45(2), 607 (2012)
  6. Su YW, Lin YC, Wei KH, Mater. Chem. A, 5, 24051 (2017)
  7. Antohe S, Iftimie S, Hrostea L, Antohe VA, Girtan M, Thin Solid Films, 642, 219 (2017)
  8. Huang Y, Liu F, Guo X, Zhang W, Gu Y, Zhang J, Han CC, Russell TP, Hou J, Adv. Eng. Mater., 3, 930 (2013)
  9. Cetin A, Istanbulluoglu C, Hacioglu SO, Cevher SC, Toppare L, Cirpan A, J. Polym. Sci. A: Polym. Chem., 55(22), 3705 (2017)
  10. Kim SW, Choi J, Bui TTT, Lee C, Cho C, Na K, Jung J, Song CE, Ma B, Lee JY, Shin WS, Kim BJ, Adv. Funct. Mater., 27, 170307 (2017)
  11. Wang X, Wang K, Wang M, Polym. Chem., 6, 1846 (2015)
  12. Hendriks KH, Heintges GHL, Wienk MM, Janssen RAJ, J. Mater. Chem. A, 2, 17899 (2014)
  13. Duan CH, Gao K, van Franeker JJ, Liu F, Wienk MM, Janssen RAJ, J. Am. Chem. Soc., 138(34), 10782 (2016)
  14. Braunecker WA, Oosterhout SD, Owczarczyk ZR, Kopidakis N, Ratcliff EL, Ginley DS, Olson DC, ACS Macro Lett., 3, 622 (2014)
  15. Zhang SP, Bauer NE, Kanal IY, You W, Hutchison GR, Meyer TY, Macromolecules, 50(1), 151 (2017)
  16. Gao J, Wang W, Zhang S, Xiao S, Chan C, Yang M, Lu X, You W, Mater. Chem. A, 6, 179 (2018)
  17. Zhang Q, Kelly MA, Bauer N, You W, Accounts Chem. Res., 50, 2401 (2017)
  18. Ding Z, Kettle J, Horie M, Chang SW, Smith GC, Shames AI, Katz EA, J. Mater. Chem. A, 4, 7274 (2016)
  19. Kim JH, Gadisa A, Schaefer C, Yao H, Gautam BR, Balar N, et al., J. Mater. Chem. A, 5, 13176 (2017)
  20. Yao HF, Ye L, Zhang H, Li SS, Zhang SQ, Hou JH, Chem. Rev., 116(12), 7397 (2016)
  21. Li Z, Lu J, Tse SC, Zhou J, Du X, Tao Y, Ding J, J. Mater. Chem., 21, 3226 (2011)
  22. Das S, Bedi A, Krishna GR, Reddy CM, Zade SS, Org. Biomol. Chem., 9, 6963 (2011)
  23. Jung EH, Bae S, Yoo TW, Jo WH, Polym. Chem., 5, 6545 (2014)
  24. Patra A, Bendikov M, J. Mater. Chem., 20, 422 (2010)
  25. Warnan J, Cabanetos C, Bude R, Labban EA, Li L, Beaujuge PM, Chem. Mater., 26, 2829 (2014)
  26. Li Z, Lu J, Tse SC, Zhou J, Du X, Taob Y, Ding J, J. Mater. Chem., 21, 3226 (2011)
  27. Kim IT, KR Patent 10-1777669 (2017).
  28. Ma WL, Yang CY, Gong X, Lee K, Heeger AJ, Adv. Funct. Mater., 15(10), 1617 (2005)
  29. Lenes M, Koster LJA, Appl. Phys. Lett., 88, 243502 (2006)
  30. He F, Wang W, Chen W, Xu T, Darling SB, Strzalka J, Liu Y, Yu LP, J. Am. Chem. Soc., 133(10), 3284 (2011)