Journal of Industrial and Engineering Chemistry, Vol.91, 149-166, November, 2020
Effective charge separation through the sulfur vacancy interfacial in n-CdO/p-CdS bulk heterojunction particle and its solar-induced hydrogen production
E-mail:,
The composites are still worth researching, because the catalytic performance greatly varies depending on the ways when two or more particles are grafted. In this study, we report a n-CdO/p-CdS bulk heterojunction (BHJ) nanostructures with abundant sulfur vacancy defects to improve the photoexcited charge separation during the photocatalytic reactions. The n-CdO/p-CdS nanostructured photocatalyst exhibits extended visible light absorption, reduced electron-hole recombination rate and improved photoexcited charge carriers generation, transfer and separation capability. Moreover, electronic band differences between the CdS and CdO bulk junctions creates the sulfur vacancies via CdSO3. The hydrogen production amount of the 1CdO/2CdS catalyst (1.2 μmolㆍg-1) shows a remarkable performance that is 10 times higher than that of the CdO (0.02 μmolㆍg-1) and CdS (0.07 μmolㆍg-1) single particle catalysts. The improved photocatalytic activity can be ascribed to the intimate interfacial contact between CdS and CdO nanostructures, sulfur vacancies and efficient charge carrier separation.
Keywords:n-CdO/p-CdS BHJ catalyst;CdSO3 BHJ interfacial;Effective charge separation;Hydrogen production;Water splitting
- Moniz SJA, Shevlin SA, Martin DJ, Guo ZX, Tang J, Energy Environ. Sci., 8, 731 (2015)
- Cheng L, Xiang Q, Liao Y, Zhang H, Energy Environ. Sci., 11, 1362 (2018)
- Jha M, Ansari S, Shimpi NG, J. Ind. Eng. Chem., 69, 269 (2019)
- Luo M, Yao W, Huang C, Wu Q, Xu Q, J. Mater. Chem. A., 3, 13884 (2015)
- Jang JS, Hwang DW, Lee JS, Catal. Today, 120(2), 174 (2007)
- Song J, Zhang H, Sun R, Li X, Sun D, Energy Environ. Sci., 10, 225 (2017)
- Heo JN, Shin J, Do JY, Kim R, Kang M, Appl. Surf. Sci., 495, 143567 (2019)
- Septina W, Prabhakar RR, Wick R, Moehl T, Tilley SD, Chem. Mater., 29, 1735 (2017)
- Hao LX, Chen G, Yu YG, Zhou YS, Han ZH, Liu Y, Int. J. Hydrog. Energy, 29, 14479 (2014)
- Jiang W, Liu Y, Zong R, Li Z, Yao W, Zhu Y, J. Mater. Chem. A., 3, 18406 (2015)
- Kahane SV, Sasikala R, Vishwanadh B, Sudarsan V, Mahamuni S, Int. J. Hydrog. Energy, 38(35), 15012 (2013)
- Cho KH, Sung YM, Nano Energy, 36, 176 (2017)
- Lai Y, Wang YQ, Zhu YS, Guo RK, Xia Y, Huang W, Li ZL, J. Electrochem. Soc., 165(3), H91 (2018)
- An Q, Zhang F, Li L, Wang J, Zhang J, Zhou L, Tang W, ACS Appl. Mater. Interf., 6, 6537 (2014)
- Gonfa BA, Kim MR, Delegan N, Tavares AC, Izquierdo R, Wu N, El Khakani MA, Ma D, Nanoscale, 7, 10039 (2015)
- Sun LD, Huang Y, Hossain MA, Li KL, Adams S, Wang Q, J. Electrochem. Soc., 159(5), D323 (2012)
- Borse PH, J. Korean Phys. Soc., 61, 73 (2012)
- Zhang FJ, Xie FZ, Zhu SF, Liu J, Zhang J, Mei SF, Zhao W, Chem. Eng. J., 228, 435 (2013)
- Jang JS, Kim HG, Lee JS, Catal. Today, 185(1), 270 (2012)
- Kim HG, Borse PH, Jang JS, Jeong ED, Jung OS, Suh YJ, Lee JS, Chem. Commun., 39, 5889 (2009)
- Chen S, Huang D, Xu P, Xue W, Lei L, Cheng M, Wang R, Liu X, Deng R, J. Mater. Chem. A., 8, 2286 (2020)
- He Y, Wang P, Zhu J, Yang Y, Liu Y, Chen M, Cao D, Yan X, ACS Appl. Mater. Interf., 11, 37322 (2019)
- Yusuf GT, Babatola BK, Ishola AD, Sci. Eng. Applications, 1, 92 (2016)
- Nasir JA, Hafeez M, Arshad M, Ali NZ, Teixeira IF, McPherson I, Rehman MZU, Khan A, ChemSusChem, 11, 2587 (2018)
- Maryam M, Haneih H, J. Mat, Sci. Mat. in Electronics, New York 27, (6) 6480 (2016).
- Puigdollers AR, Schlexer P, Tosoni S, Pacchioni G, ACS Catal., 7, 6493 (2017)
- Ingham B, Toney MF, Optical and Magnetic Applications, Elsevier B.V, 2014.
- Kacher J, Landon C, Adams BL, Fullwood D, Ultramicroscopy, 9, 1148 (2009)
- Camuffo D, Elsevier B.V, 2014.
- Richards R, Taylor &Francis, pp.129 2006.
- Balamurugan S, Balu AR, Usharani K, Suganya M, Anitha S, Prabha D, Ilangovan S, Pacific Science Review A: Natural Science and Engineering 18, (3) 228 (2016).
- Kaviyarasu K, Manikandan E, Paulraj P, Mohamed SB, Kennedy J, J. Alloy. Compd., 593, 67 (2014)
- Sathishkumar R, Devakirubai E, David A, Dduke J, Tamilselvan S, Nithiyanantham S, Mater, 6(1), 41 (2017)
- Dey PC, Das R, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 207, 156 (2019)
- Trivedi MK, Ratil S, Shettigar H, Singh R, Jana S, Mod. Chem. Appl., 3, 1 (2015)
- Brandles JEB, Discussions of Faraday Society 1 (1947).
- Li K, Lu X, Zhang Y, Liu K, Huang Y, Liu H, Environmental Research, 185, 109409 (2020)
- Huang Y, Guo Z, Liu H, Zhang S, Wang P, Lu J, Tong Y, Adv. Funct. Mater., 1903490 (2019).
- Liu Y, Yu H, Quan X, Chen S, Int. J. Photoenergy, 5 (2013).
- Kahane SV, Sasikala R, Sudarsan V, Mahamuni S, Solid State Phys., 1591, 279 (2014)
- Peng SQ, Yang Y, Tan JN, Gan C, Li YX, Appl. Surf. Sci., 447, 822 (2018)
- Im Y, Kang S, Kim KM, Ju T, Han GB, Park NK, Lee TJ, Kang M, Int J. Photonenergy, 10 (2013).
- Son N, Do JY, Kang M, Ceram. Int., 43(14), 11250 (2017)
- Ran J, Zhang J, Yu J, Jaroniec M, Qiao SZ, R. Soc. Chem., 43, 7787 (2014)
- Lian L, Yao B, Hou S, Fang J, Yan S, Song W, Environ. Sci. Technol., 51(5), 2954 (2017)
- Jose D, Sorensen CM, Rayalu S, Shrestha KM, Klabunde KJ, Int. J. Photoenergy, 10 (2013).
- Wang P, Li HT, Sheng Y, Chen F, Appl. Surf. Sci., 463, 27 (2019)
- Tang ZR, Han B, Han C, Xu YJ, J. Mater. Chem. A, 5, 2387 (2017)
- Jain G, Rocks C, Maguire P, Mariotti D, Nanotechnology, 3, 215707 (2020)
- Sabah A, Siddiqi SA, Ali S, World Academy of Science, Engineering and Technology, 70, 82 (2010).
- Pascual JL, Phys. Rev. B, 70, 045109 (2004)
- Viezbicke BD, Patel S, Davis BE, Birnie DPIII, XXX, 252, 1700 (2015)
- Xue J, Elbanna O, Kim S, Fujitsuka M, Majima T, Chem. Commun., 54, 6052 (2018)
- Wang Y, Herron N, J. Phys. Chem., 92, 4988 (1988)
- Xu GQ, Liu B, Xu SJ, Chen CH, Chua SJ, Dana LM, J. Phys. Chem. Solids, 61(6), 829 (2000)
- Li L, Salvador PA, Rohrer GS, Nanoscale, 6, 24 (2014)
- Li Y, Xia Y, Liu K, Ye K, Wang Q, Zhang S, Huang Y, Li H, ACS Appl. Mater. Interfaces, 12, 25494 (2020)
- Liao LF, Wu WQ, Jiang Y, Zhong JX, Wang L, Kuang DB, Chem. Soc. Rev., 49, 354 (2020)
- Liao JY, He JW, Xu H, Kuang DB, Su CY, J. Mater. Chem., 22, 7910 (2012)
- Ye K, Li Y, Yang H, Li M, Huang Y, Zhang S, Ji H, Appl. Catal. B: Environ., 259, 118085 (2019)
- Sun I, Sun L, Han N, Chu H, Bai S, Shu X, Luo R, Chen A, Sens. Actuators B-Chem., 299, 1 (2019)
- Bag PP, Wang XS, Sahoo P, Xiong J, Cao R, Catal. Sci. Technol, 7, 5113 (2017)
- Dong J, Zeng X, Xia W, Zhang X, Zhou M, Wang C, RSC Adv., 7, 20874 (2017)
- Cai J, Zhang Y, Qian Y, Shan C, Pan B, Sci. Rep., 8, 1 (2018)
- Zhang Y, Dong K, Liu Z, Wang H, MA S, Zhang A, Lia M, Yu L, Li Y, Pro. Natsci. Sci. Mater., 27, 443 (2017)
- Do JY, Chava RK, Kim SK, Nahm K, Park NK, Hong JP, Lee SJ, Kang M, Appl. Surf. Sci., 451, 86 (2018)
- Wu Y, Jin S, Ye Y, Wang S, Feng Z, Li C, Phys. Chem. C., 118, 30269 (2014)
- Vasilevskiy MI, Rolo AG, Gomes MJM, Vikhrova OV, Ricolleau C, J. Phys. Condens. Matter, 13, 3491 (2001)
- Kripal R, Vaish G, Tripathi UM, J. Electronic Mat., 48, 1545 (2019)
- Bensenane B, Asfari Z, Platas-Iglesias C, Esteban-Gomez D, Djafri F, Elhabiri M, Charbonniere LJ, Dalton Trans., 45, 15211 (2016)
- Wang K, Li Y, Li J, Zhang G, Appl. Catal. B: Environ., 263, 117730 (2020)