Journal of Industrial and Engineering Chemistry, Vol.91, 231-239, November, 2020
Programmable droplet-based microfluidic serial dilutor
E-mail:,
A programmable droplet-based microfluidic serial dilutor platform is presented, which is capable of generating a series of droplets with the scalable stepwise concentration gradient of a sample. Sequential dilution of a target molecule was automatically performed in sub-nanoliter scale droplets by synchronizing a microfluidic peristaltic mixer and a valve-assisted droplet generator. The volume of droplets dispensed from the mixer was controlled by microvalve operation, which enabled to tune the dilution with various dilution factors. After evaluation of the mixer efficiency and calibration of the droplet size at different valve operating conditions, serial dilutions of rhodamine B isothiocyanate-dextran was demonstrated, in an automated manner, at three different dilution factors. Specifically, the effect of the rhodamine B isothiocyanate-dextran concentration and temperature on variations of the fluorescent intensity was quantified. This programmable microfluidic droplet serial dilutor will open new avenues, an analytical tool, to evaluate complex chemical and biochemical reactions, especially when limited sample volume is available, for example, at the early stage of drug discovery and biochemical process developing.
- Johnson TR, Case CL, Laboratory Experiments in Microbiology, Pearson/ Benjamin Cummings, 2004.
- Aneja KR, Experiments in Microbiology, Plant Pathology and Biotechnology, New Age International, 2007.
- Mayr LM, Bojanic D, Curr. Opin. Pharmacol., 9(5), 580 (2009)
- Jeon NL, Dertinger SKW, Chiu DT, Choi IS, Stroock AD, Whitesides GM, Langmuir, 16(22), 8311 (2000)
- Dertinger SKW, Chiu DT, Jeon NL, Whitesides GM, Anal. Chem., 73(6), 1240 (2001)
- Jiang XY, Ng JMK, Stroock AD, Dertinger SKW, Whitesides GM, J. Am. Chem. Soc., 125(18), 5294 (2003)
- Walker GM, Monteiro-Riviere N, Rouse J, O’Neill AT, Lab Chip, 7(2), 226 (2007)
- Hattori K, Sugiura S, Kanamori T, Lab Chip, 9, 1763 (2009)
- Sugiura S, Hattori K, Kanamori T, Anal. Chem., 82(19), 8278 (2010)
- Unger MA, Chou HP, Thorsen T, Scherer A, Quake SR, Science, 288(5463), 113 (2000)
- Chou HP, Unger MA, Quake SR, Biomed. Microdevices, 3(4), 323 (2001)
- Hong JW, Studer V, Hang G, Anderson WF, Quake SR, Nat. Biotechnol., 22(4), 435 (2004)
- Rho HS, Hanke AT, Ottens M, Gardeniers HJGE, Electrophoresis, 39(8), 1031 (2018)
- Rho HS, Hanke AT, Ottens M, Gardeniers H, PLoS One, 11(4) (2016)
- Yang Y, Le Gac S, Terstappen LWMM, Rho HS, Electrophoresis, 39(3), 548 (2018)
- Ahrar S, Hwang M, Duncan PN, Hui EE, Analyst, 139(1), 187 (2014)
- Niu X, Gielen F, Edel JB, DeMello AJ, Nat. Chem., 3(6), 437 (2011)
- Bringer MR, Gerdts CJ, Song H, Tice JD, Ismagilov RF, Philos. Trans. R. Soc. Lond. Ser. A-Math. Phys. Eng. Sci., 362(1818), 1087 (2004)
- Shestopalov I, Tice JD, Ismagilov RF, Lab Chip, 4(4), 316 (2004)
- Niu X, Gulati S, Edel JB, Demello AJ, Lab Chip, 8(11), 1837 (2008)
- Postek W, Kaminski TS, Garstecki P, Analyst, 142(16), 2901 (2017)
- Zeng S, Li B, Su X, Qin J, Lin B, Lab Chip, 9(10), 1340 (2009)
- Jambovane S, Kim DJ, Duin EC, Kim SK, Hong JW, Anal. Chem., 83(9), 3358 (2011)
- Jeon NL, Baskaran H, Dertinger SKW, Whitesides GM, Van De Water L, Toner M, Nat. Biotechnol., 20(8), 826 (2002)
- Saadi W, Wang SJ, Lin F, Jeon NL, Biomed. Microdevices, 8(2), 109 (2006)
- Dertinger SKW, Jiang X, Li Z, Murthy VN, Whitesides GM, Proc. Natl. Acad. Sci. U. S. A., 99(20), 12542 (2002)
- Kim C, Lee K, Kim JH, Shin KS, Lee KJ, Kim TS, Kang JT, Lab Chip, 8(3), 473 (2008)
- Keenan TM, Folch A, Lab Chip, 8(1), 34 (2007)
- Xia Y, Whitesides GM, Annu. Rev. Mater. Sci., 28(1), 153 (1998)
- Yang Y, Rho HS, Stevens M, Tibbe AGJ, Gardeniers H, Terstappen LWMM, Lab Chip, 15(22), 4331 (2015)
- Rho HS, Yang Y, Hanke AT, Ottens M, Terstappen LWMM, Gardeniers H, Lab Chip, 16(2), 305 (2016)
- Rho HS, Veltkamp HW, Hanke AT, Ottens M, Breukers C, Habibovic P, Gardeniers H, Molecules, 25(6), 1380 (2020)
- Rho HS, Yang Y, Veltkamp HW, Gardeniers H. Direct Delivery of Reagents from a Pipette Tip to a PDMS Microfluidic Device. RSC Chips & Tips.
- Samy R, Glawdel T, Ren CL, Anal. Chem., 80(2), 369 (2008)
- Kim D, Rho HS, Jambovane S, Shin S, Hong JW, Rev. Sci. Instrum., 9(10), 1340 (2016)
- Karstens T, Kobs K, J. Phys. Chem., 84(14), 1871 (1980)
- Arnaoutakis G, Nather D, Quenching of Fluorescence with Temperature, (2016).
- Knowles TPJ, White DA, Abate AR, Agresti JJ, Cohen SIA, Sperling RA, De Genst EJ, Dobson CM, Weitz DA, Proc. Natl. Acad. Sci. U. S. A., 108(36), 14746 (2011)