화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.91, 317-329, November, 2020
Toward high-performance hard carbon as an anode for sodium-ion batteries: Demineralization of biomass as a critical step
E-mail:
Biomass is a promising precursor for producing high-performance hard carbon as an anode for sodium-ion batteries (SIBs) because of its high low-voltage plateau capacity. However, the effect of residual ash in biomass on the electrochemical performance of hard carbons has rarely been investigated. This work describes an effective ash-removal approach as a critical step for preparing high-performance anodes for SIBs. A strong correlation between the ash removal techniques with structural and electrochemical properties of hard carbon was revealed. By examining various ash-removal techniques prior to carbonization and after carbonization using aqueous acid, neutral, and alkaline solutions, it was demonstrated that the removal of ash from raw cocoa pod husk (CPH) using aqueous acid and subsequent carbonization at 1300 °C can produce hard carbon with high Na+ ion uptake in the low-voltage plateau region. During the acid pretreatment, ash and some hemicellulose fractions were removed, and carbonization of the acid-treated CPH resulted in hard carbon with a high degree of graphitization and reduced surface area. When tested as an anode in SIBs, the hard carbon produced from the acid-treated CPH exhibited an exceptionally high capacity of 317 mAh g-1 and high plateau capacity of 244 mAh g-1 at 0.05 A g-1, with a high initial Coulombic efficiency of 87%. At a high current density of 250 mA g-1, a high capacity of 134 mAh g-1 was maintained after 800 cycles. Post-treatment of hard carbon did not enhance the electrochemical performance. The physicochemical and electrochemical properties of hard carbons produced with the various pre- and post-treatment techniques were presented.
  1. Yabuuchi N, Kubota K, Dahbi M, Komaba S, Chem. Rev., 114(23), 11636 (2014)
  2. Jeong SY, Ghosh S, Kim JK, Kang DW, Jeong SM, Kang YC, Cho JS, J. Ind. Eng. Chem., 75, 100 (2019)
  3. Nagulapati VM, Yoon YH, Kim DS, Kim HG, Lee WS, Lee JH, Kim KH, Hur JH, Kim IT, Lee SG, J. Ind. Eng. Chem., 76, 419 (2019)
  4. Choi SH, Jang YJ, Choi YJ, Ko YN, J. Ind. Eng. Chem., 80, 130 (2019)
  5. Nobuhara K, Nakayama H, Nose M, Nakanishi S, Iba H, J. Power Sources, 243, 585 (2013)
  6. Moriwake H, Kuwabara A, Fisher CAJ, Ikuhara Y, RSC Adv., 7, 36550 (2017)
  7. Liu Y, Merinov BV, Goddard WA, Proc. Natl. Acad. Sci. USA, 113, 3735 (2016)
  8. Jache B, Adelhelm P, Angew. Chem.-Int. Edit., 53, 10169 (2014)
  9. Xu ZL, Park J, Yoon G, Kim H, Kang K, Small Methods, 3, 180022 (2019)
  10. Stevens AA, Dahn JR, J. Electrochem. Soc., 148(8), A803 (2001)
  11. Stevens DA, Dahn JR, J. Electrochem. Soc., 147(4), 1271 (2000)
  12. Thomas P, Billaud D, Electrochim. Acta, 47(20), 3303 (2002)
  13. Qiu S, Xiao L, Sushko ML, Han KS, Shao Y, Yan M, Liang X, Mai L, Feng J, Cao Y, Ai X, Yang H, Liu J, Adv. Eng. Mater., 7, 170040 (2017)
  14. Dou X, Hasa I, Saurel D, Vaalma C, Wu L, Buchholz D, Bresser D, Komaba S, Passerini S, Mater. Today, 23, 87 (2019)
  15. Kim JH, Jung MJ, Kim MJ, Lee YS, J. Ind. Eng. Chem., 61, 368 (2018)
  16. Komaba S, Murata W, Ishikawa T, Yabuuchi N, Ozeki T, Nakayama T, Ogata A, Gotoh K, Fujiwara K, Adv. Funct. Mater., 21(20), 3859 (2011)
  17. Tsai PC, Chung SC, Lin SK, Yamada A, J. Mater. Chem. A, 3, 9763 (2015)
  18. Stevens DA, Dahn JR, J. Electrochem. Soc., 147(12), 4428 (2000)
  19. Zhang B, Ghimbeu CM, Laberty C, Vix-Guterl C, Tarascon JM, Adv. Eng. Mater., 6, 150158 (2015)
  20. Bai P, He Y, Zou X, Zhao X, Xiong P, Xu Y, Adv. Eng. Mater., 8, 170321 (2018)
  21. Bommier C, Surta TW, Dolgos M, Ji X, Nano Lett., 15, 5888 (2015)
  22. Ding J, Wang H, Li Z, Kohandehghan A, Cui K, Xu Z, Zahiri B, Tan X, Lotfabad EM, Olsen BC, Mitlin D, ACS Nano, 7, 11004 (2013)
  23. Lotfabad EM, Ding J, Cui K, Kohandehghan A, Kalisvaart WP, Hazelton M, Mitlin D, ACS Nano, 8, 7115 (2014)
  24. Cao Y, Xiao L, Sushko ML, Wang W, Schwenzer B, XIao J, Nie Z, Saraf LV, Yang Z, Liu J, Nano Lett., 12, 3783 (2012)
  25. Lu H, Ai F, Jia Y, Tang C, Zhang X, Huang Y, Yang H, Cao Y, Small, 14, 180269 (2018)
  26. Alvin S, Yoon D, Chandra C, Susanti RF, Chang W, Ryu C, Kim J, J. Power Sources, 430, 157 (2019)
  27. Xiao L, Lu H, Fang Y, Sushko ML, Cao Y, Ai X, Yang H, Liu J, Adv. Eng. Mater., 8, 170323 (2018)
  28. Wang P, Zhu X, Wang Q, Xu X, Zhou X, Bao J, J. Mater. Chem. A, 5, 5761 (2017)
  29. Wang Q, Zhu X, Liu Y, Fang Y, Zhou X, Bao J, Carbon, 127, 658 (2018)
  30. Alvin S, Yoon D, Chandra C, Cahyadi HS, Park JH, Chang W, Chung KY, Kim J, Carbon, 145, 67 (2019)
  31. Yun YS, Park KY, Lee B, Cho SY, Park YU, Hong SJ, Kim BH, Gwon H, Kim H, Lee S, Park YW, Jin HJ, Kang K, Adv. Mater., 27(43), 6914 (2015)
  32. Vali R, Janes A, Thomberg T, Lust E, Electrochim. Acta, 253, 536 (2017)
  33. Rath PC, Patra J, Huang HT, Bresser D, Wu TY, Chang JK, ChemSusChem, 12, 2302 (2019)
  34. Zhang T, Mao J, Liu X, Xuan M, Bi K, Zhang XL, Hu J, Fan J, Chen S, Shao G, RSC Adv., 7, 41504 (2017)
  35. Wang HL, Yu WH, Shi J, Mao N, Chen SG, Liu W, Electrochim. Acta, 188, 103 (2016)
  36. Li H, Shen F, Luo W, Dai J, Han X, Chen Y, Yao Y, Zhu H, Fu K, Hitz E, Hu L, CS Appl. Mater. Interfaces, 8, 2204 (2016)
  37. Li X, Zeng X, Ren T, Zhao J, Zhu Z, Sun S, Zhang Y, J. Alloy. Compd., 787, 229 (2019)
  38. Dou X, Hasa I, Hekmatfar M, Diemant T, Behm RJ, Buchholz D, Passerini S, ChemSusChem, 10, 2668 (2017)
  39. Shahbandeh M, Global cocoa production 1980-2019.
  40. Parikh J, Channiwala SA, Ghosal GK, Fuel, 84(5), 487 (2005)
  41. Dou X, Hasa I, Saurel D, Jauregui M, Buchholz D, Rojo T, Passerini S, ChemSusChem, 11, 3276 (2018)
  42. Zhang Y, Li X, Dong P, Wu G, Xiao J, Zeng X, Zhang Y, Sun X, CS Appl. Mater. Interfaces, 10, 42796 (2018)
  43. Chen C, Huang Y, Zhu Y, Zhang Z, Guang Z, Meng Z, Liu P, ACS Sustain. Chem. Eng., 8, 1497 (2020)
  44. Wu F, Liu L, Yuan Y, Li Y, Bai Y, Li T, Lu J, Wu C, CS Appl. Mater. Interfaces, 10, 27030 (2018)
  45. Zhu Z, Liang F, Zhou Z, Zeng X, Wang D, Dong P, Zhao J, Sun S, Zhang Y, Li X, J. Mater. Chem. A, 6, 1513 (2018)
  46. Rowell RM, Pettersen R, Rowell JS, Tshabalala MA, Cell Wall Chemistry, Taylor and Francis, USA, 2012.
  47. Basu P, Biomass Gasification, Pyrolysis, and Torrefaction: Practical Design and Theory, second ed., Elsevier, London, UK, pp.1 2013.
  48. Vriesmann LC, Teofilo RF, Lucia de Oliveira Petkowicz C, LWT Food Sci. Technol., 49, 108 (2012)
  49. TAPPI, TAPPI Standards: Regulations and Style Guidelines, TAPPI Press, USA, 2018.
  50. Soest PJV, J. Assoc. Off. Agric. Chem., 46, 829 (1963)
  51. Saenko NS, Phys. Proc., 23, 102 (2012)
  52. Sluiter A, Ruiz R, Scarlata C, Sluiter J, Templeton D, Determination of Extractives in Biomass, Laboratory Analytical Procedure (LAP), 2008.
  53. Yapo BM, Carbohydr. Polym., 86, 373 (2011)
  54. Maric M, Grassino AN, Zhu Z, Barba FJ, Brncic M, Brncic SR, Trends Food Sci. Technol., 76, 28 (2018)
  55. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Determination of Ash in Biomass, Laboratory Analytical Procedure (LAP), 2008.
  56. Chen H, Wang L, Pretreatment Strategies for Biochemical Conversion of Biomass, Academic Press, Oxford, pp.21 2017.
  57. Lima MA, Lavorente GB, da Silva HKP, Bragatto J, Rezende CA, et al., Biotechnol. Biofuels, 6, 75 (2013)
  58. Amin FR, Khalid H, Zhang H, Rahman SU, Zhang R, Liu G, Chen C, AMB Express, 7, 72 (2017)
  59. Yang HP, Yan R, Chen HP, Lee DH, Zheng CG, Fuel, 86(12-13), 1781 (2007)
  60. Marcilla A, Garcia AN, Pastor MV, Leon M, Sanchez AJ, Gomez DM, Thermochim. Acta, 564, 24 (2013)
  61. Sun R, Tomkinson J, Jones GL, Polym. Degrad. Stabil., 68, 111 (2000)
  62. Tejado A, Pena C, Labidi J, Echeverria JM, Mondragon I, Bioresour. Technol., 98(8), 1655 (2007)
  63. Watkins D, Nuruddin M, Hosur M, Tcherbi-Narteh A, Jeelani S, J. Mater. Res. Technol., 4, 26 (2015)
  64. Zhang JF, Feng L, Wang D, Zhang RH, Liu GQ, Cheng G, Bioresour. Technol., 153, 379 (2014)
  65. Abian M, Alzueta MU, Carvalho A, Rabacal M, Costa M, Energy Fuels, 31(11), 12238 (2017)
  66. Raveendran K, Ganesh A, Khilar KC, Fuel, 74, 1812 (1995)
  67. Jones D, Ormondroyd GO, Curling SF, Popescu CM, Popescu MC, Chemical Compositions of Natural Fibres, Woodhead Publishing, pp.23 2017.
  68. Ouarhim W, Zari N, Bouhfid R, Qaiss AEK, Mechanical Performance of Natural Fibers-Based Thermosetting Composites, Woodhead Publishing, pp.43 2019.
  69. Deng J, Xiong T, Wang H, Zheng A, Wang Y, ACS Sustain. Chem. Eng., 4, 3750 (2016)
  70. Jeon JW, Zhang L, Lutkenhaus JL, Laskar DD, Lemmon JP, Choi D, et al., ChemSusChem, 8, 428 (2015)
  71. Fujimoto H, Shiraishi M, Carbon, 39, 1753 (2001)
  72. Li Z, Ma Surta TW, Bommier C, Jian Z, Xing Z, Stickle WF, Dolgos M, Amine K, Lu J, Wu T, Ji X, ACS Energy Lett., 1, 395 (2016)
  73. Dou X, Geng C, Buchholz D, Passerini S, APL Mater., 6, 047501 (2018)
  74. Yoon D, Hwang J, Chang W, Kim J, CS Appl. Mater. Interfaces, 10, 569 (2018)
  75. Khalil RA, Norwegian University of Science and Technology, Norwegia, 2009.
  76. Poling BE, Thomson GH, Friend DG, Rowley RL, Wilding WV, Section 2. Physical and Chemical Data, The McGraw-Hill Companies, 2008.
  77. Wang Y, Alsmeyer DC, McCreery RL, Chem. Mater., 2, 557 (1990)
  78. Sadezky A, Muckenhuber H, Grothe H, Niessner R, Poschl U, Carbon, 43, 1731 (2005)
  79. Jawhari T, Roid A, Casado J, Carbon, 33, 1561 (1995)
  80. Jeon JW, Sharma R, Meduri P, Arey BW, Schaef HT, Lutkenhaus JL, Lemmon JP, Thallapally PK, Nandasiri MI, McGrail BP, Nune SK, CS Appl. Mater. Interfaces, 6, 7214 (2014)
  81. Thommes M, et al., Physisorption of Gases, With Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report), pp.1051 (2015).
  82. Nzihou A, Stanmore B, Sharrock P, Energy, 58, 305 (2013)
  83. Klinghoffer NB, Castaldi MJ, Nzihou A, Fuel, 157, 37 (2015)
  84. Marquez-Montesinos F, Cordero T, Rodriguez-Mirasol J, Rodriguez JJ, Fuel, 81(4), 423 (2002)
  85. Lu Z, Maroto-Valer MM, Schobert HH, Fuel, 89(11), 3436 (2010)
  86. Correa CR, Hehr T, Voglhuber-Slavinsky A, Rauscher Y, Kruse A, J. Anal. Appl. Pyrolysis, 140, 137 (2019)
  87. Sakintuna B, Yurum Y, Energy Fuels, 18(3), 883 (2004)
  88. Rongti L, Wei P, Sano M, Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci., 34, 433 (2003)
  89. Weppner W, Huggins RA, J. Electrochem. Soc., 124, 1569 (1977)
  90. Kipling JJ, Sherwood JN, Shooter PV, Thompson NR, Carbon, 1, 321 (1964)